Unsupervised Hashing with Contrastive Learning by Exploiting Similarity Knowledge and Hidden Structure of Data

计算机科学 散列函数 相似性(几何) 人工智能 生成模型 概率逻辑 语义相似性 自然语言处理 特征哈希 编码(集合论) 机器学习 模式识别(心理学) 生成语法 图像(数学) 哈希表 双重哈希 集合(抽象数据类型) 程序设计语言 计算机安全
作者
Zhenpeng Song,Qinliang Su,Jiayang Chen
标识
DOI:10.1145/3581783.3612596
摘要

By noticing the superior ability of contrastive learning in representation learning, several recent works have proposed to use it to learn semantic-rich hash codes. However, due to the absence of label information, existing contrastive-based hashing methods simply follow contrastive learning by only using the augmentation of the anchor as positive, while treating all other samples in the batch as negatives, resulting in the ignorance of a large number of potential positives. Consequently, the learned hash codes tend to be distributed dispersedly in the space, making their distances unable to accurately reflect their semantic similarities. To address this issue, we propose to exploit the similarity knowledge and hidden structure of the dataset. Specifically, we first develop an intuitive approach based on self-training that comprises two main components, a pseudo-label predictor and a hash code improving module, which mutually benefit from each other by utilizing the output from one another, in conjunction with the similarity knowledge obtained from pre-trained models. Furthermore, we subjected the intuitive approach to a more rigorous probabilistic framework and propose CGHash, a probabilistic hashing model based on conditional generative models, which is theoretically more reasonable and could model the similarity knowledge and the hidden group structure more accurately. Our extensive experimental results on three image datasets demonstrate that CGHash exhibits significant superiority when compared to both the proposed intuitive approach and existing baselines. Our code is available at https://github.com/KARLSZP/CGHash.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
XHT完成签到 ,获得积分10
1秒前
Simonn29完成签到,获得积分10
1秒前
3秒前
鹿茸与共发布了新的文献求助10
3秒前
3秒前
Johnny完成签到,获得积分10
3秒前
zzz发布了新的文献求助10
4秒前
和谐谷蕊发布了新的文献求助10
4秒前
木子南完成签到,获得积分10
4秒前
4秒前
鑫儿完成签到,获得积分10
5秒前
安安完成签到 ,获得积分10
5秒前
5秒前
赘婿应助自由小土豆采纳,获得10
5秒前
舒心远侵发布了新的文献求助30
5秒前
phil发布了新的文献求助10
5秒前
ryzee发布了新的文献求助10
6秒前
初云岫发布了新的文献求助10
6秒前
李爱国应助赵振辉采纳,获得10
6秒前
hhxx发布了新的文献求助20
6秒前
常大爷发布了新的文献求助10
6秒前
要开心完成签到 ,获得积分10
7秒前
8秒前
文静的绯完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
10秒前
简单发布了新的文献求助10
10秒前
11秒前
果粒橙980应助花小胖采纳,获得10
11秒前
12秒前
风枞完成签到 ,获得积分10
12秒前
14秒前
上官若男应助科研通管家采纳,获得10
14秒前
丘比特应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
14秒前
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745499
求助须知:如何正确求助?哪些是违规求助? 3288461
关于积分的说明 10058885
捐赠科研通 3004680
什么是DOI,文献DOI怎么找? 1649740
邀请新用户注册赠送积分活动 785530
科研通“疑难数据库(出版商)”最低求助积分说明 751136