亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated pipeline reconstruction using deep learning & instance segmentation

摄影测量学 点云 管道(软件) 人工智能 分割 计算机科学 计算机视觉 管道运输 三维重建 软件 对象(语法) 激光扫描 工程类 激光器 光学 物理 程序设计语言 环境工程
作者
Lukas Hart,Stefan Knoblach,Michael Möser
出处
期刊:ISPRS open journal of photogrammetry and remote sensing [Elsevier]
卷期号:9: 100043-100043 被引量:1
标识
DOI:10.1016/j.ophoto.2023.100043
摘要

BIM is a powerful tool for the construction industry as well as for various other industries, so that its use has increased massively in recent years. Laser scanners are usually used for the measurement, which, in addition to the high acquisition costs, also cause problems on reflective surfaces. The use of photogrammetric techniques for BIM in industrial plants, on the other hand, is less widespread and less automated. CAD software (for point cloud evaluation) contains at best automated reconstruction algorithms for pipes. Fittings, flanges or elbows require a manual reconstruction. We present a method for automated processing of photogrammetric images for modeling pipelines in industrial plants. For this purpose we use instance segmentation and reconstruct the components of the pipeline directly based on the edges of the segmented objects in the images. Hardware costs can be kept low by using photogrammetry instead of laser scanning. Besides the autmatic extraction and reconstruction of pipes, we have also implemented this for elbows and flanges. For object recognition, we fine-tuned different instance segmentation models using our own training data, while also testing various data augmentation techniques. The average precision varies depending on the object type. The best results were achieved with Mask R–CNN. Here, the average precision was about 40%. The results of the automated reconstruction were examined with regard to the accuracy on a test object in the laboratory. The deviations from the reference geometry were in the range of a few millimeters and were comparable to manual reconstruction. In addition, further tests were carried out with images from a plant. Provided that the objects were correctly and completely recognized, a satisfactory reconstruction is possible with the help of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
morena发布了新的文献求助10
8秒前
llllzzzyyyy发布了新的文献求助10
18秒前
gyyy发布了新的文献求助30
27秒前
科研通AI2S应助llllzzzyyyy采纳,获得10
34秒前
liu95完成签到 ,获得积分10
42秒前
morena发布了新的文献求助10
42秒前
Garry应助Benhnhk21采纳,获得10
43秒前
50秒前
雷九万班完成签到 ,获得积分10
51秒前
jacob258完成签到 ,获得积分10
1分钟前
John完成签到,获得积分10
1分钟前
西瓜完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
Sophiaaa完成签到 ,获得积分10
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
licnyu完成签到,获得积分20
1分钟前
好困应助morena采纳,获得10
1分钟前
卓卓卓发布了新的文献求助10
1分钟前
彭于晏应助licnyu采纳,获得50
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3130230
求助须知:如何正确求助?哪些是违规求助? 2780956
关于积分的说明 7750532
捐赠科研通 2436201
什么是DOI,文献DOI怎么找? 1294557
科研通“疑难数据库(出版商)”最低求助积分说明 623731
版权声明 600590