谷氨酸棒杆菌
生物化学
突变体
突变
氨基酸
生物
细菌
化学
基因
遗传学
作者
Kyoshiro Nonaka,Tatsuya Osamura,Fumiya Takahashi
标识
DOI:10.1186/s12934-023-02179-y
摘要
Abstract Background Microbial production of aromatic chemicals is an attractive method for obtaining high-performance materials from biomass resources. A non-proteinogenic amino acid, 4-amino-3-hydroxybenzoic acid (4,3-AHBA), is expected to be a precursor of highly functional polybenzoxazole polymers; however, methods for its microbial production have not been reported. In this study, we attempted to produce 4,3-AHBA from glucose by introducing 3-hydroxylation of 4-aminobenzoic acid (4-ABA) into the metabolic pathway of an industrially relevant bacterium, Corynebacterium glutamicum. Results Six different 4-hydroxybenzoate 3-hydroxylases (PHBHs) were heterologously expressed in C. glutamicum strains, which were then screened for the production of 4,3-AHBA by culturing with glucose as a carbon source. The highest concentration of 4,3-AHBA was detected in the strain expressing PHBH from Caulobacter vibrioides ( Cv PHBH). A combination of site-directed mutagenesis in the active site and random mutagenesis via laccase-mediated colorimetric assay allowed us to obtain Cv PHBH mutants that enhanced 4,3-AHBA productivity under deep-well plate culture conditions. The recombinant C. glutamicum strain expressing Cv PHBH M106A/T294S and having an enhanced 4-ABA biosynthetic pathway produced 13.5 g/L (88 mM) 4,3-AHBA and 0.059 g/L (0.43 mM) precursor 4-ABA in fed-batch culture using a nutrient-rich medium. The culture of this strain in the chemically defined CGXII medium yielded 9.8 C-mol% of 4,3-AHBA from glucose, corresponding to 12.8% of the theoretical maximum yield (76.8 C-mol%) calculated using a genome-scale metabolic model of C. glutamicum . Conclusions Identification of PHBH mutants that could efficiently catalyze the 3-hydroxylation of 4-ABA in C. glutamicum allowed us to construct an artificial biosynthetic pathway capable of producing 4,3-AHBA on a gram-scale using glucose as the carbon source. These findings will contribute to a better understanding of enzyme-catalyzed regioselective hydroxylation of aromatic chemicals and to the diversification of biomass-derived precursors for high-performance materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI