Modeling and structural optimization design of switched reluctance motor based on fusing attention mechanism and CNN-BiLSTM

超参数 计算机科学 特征(语言学) 人工智能 卷积神经网络 趋同(经济学) 模式识别(心理学) 人工神经网络 语言学 经济 经济增长 哲学
作者
Yanyuan Wang,Zhenzhong Zhang,Youyun Wang,Lichun You,Guo Wei
出处
期刊:alexandria engineering journal [Elsevier]
卷期号:80: 229-240 被引量:8
标识
DOI:10.1016/j.aej.2023.08.039
摘要

Six-degrees of freedom (6-DOF) parallel mechanisms driven by switched reluctance motors (SRMs) can realize flexible control with high precision. Efficiency is an important indicator to measure the speed control system of SRMs. There are many characteristic factors affecting efficiency and strong nonlinear relationships between different characteristic parameters, which makes it difficult for analytical models and traditional neural network models to express their spatial correlation. For this reason, a convolutional neural network (CNN)-bidirectional long short-term memory network (BiLSTM) efficiency regression prediction model (CNN-BiLSTM-SENet) that integrates the attention mechanism (SENet) is proposed. Firstly, customize a formula for sensitivity analysis to screen characteristic parameters of efficiency. Secondly, build the CNN-BiLSTM-SENet model and use sparrow search algorithm (SSA) for hyperparameter optimization, input data to CNN to extract high-dimensional feature vectors that reflect complex changing relationships between features and efficiency while establishing feature channels. Embed the SENet to adaptively perceive and assign different weights to the feature channels, enhancing the influence of key features. Input the feature vectors outputted by the front-end network to BiLSTM to bidirectionally learn coupling relationships between sequences and complete regression prediction. Finally, propose improved northern goshawk optimization (MNGO) to solve the regression model to obtain the maximum efficiency and corresponding characteristic parameters. The results proved that the SSA-optimized CNN-BiLSTM-SENet model has higher fitting exactness and better prediction effect for efficiency regression prediction, and the MNGO also has stronger search ability and faster convergence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朴素的映天完成签到 ,获得积分20
刚刚
he发布了新的文献求助10
刚刚
李健应助Solitude采纳,获得20
刚刚
卡拉蹦蹦发布了新的文献求助10
1秒前
卓卓完成签到,获得积分10
1秒前
IF发布了新的文献求助10
3秒前
3秒前
科目三应助不摆烂的钦采纳,获得10
5秒前
所所应助qutt采纳,获得10
5秒前
5秒前
洋甘菊发布了新的文献求助10
6秒前
7秒前
8秒前
zzz完成签到 ,获得积分10
8秒前
lalala应助碗碗采纳,获得10
9秒前
明天发布了新的文献求助30
9秒前
落寞溪灵完成签到 ,获得积分10
11秒前
FashionBoy应助小曾采纳,获得10
11秒前
he完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
等等完成签到,获得积分20
13秒前
白藏主发布了新的文献求助10
13秒前
13秒前
阳光的定帮完成签到,获得积分10
14秒前
14秒前
桐桐应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
Orange应助科研通管家采纳,获得10
14秒前
一一应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
15秒前
Jasper应助科研通管家采纳,获得10
15秒前
甜美幻桃完成签到 ,获得积分10
15秒前
15秒前
好事发生666完成签到,获得积分10
16秒前
ChaoZhang发布了新的文献求助10
16秒前
我是老大应助IF采纳,获得10
16秒前
17秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3258135
求助须知:如何正确求助?哪些是违规求助? 2899933
关于积分的说明 8308256
捐赠科研通 2569175
什么是DOI,文献DOI怎么找? 1395555
科研通“疑难数据库(出版商)”最低求助积分说明 653117
邀请新用户注册赠送积分活动 630990