Modeling and structural optimization design of switched reluctance motor based on fusing attention mechanism and CNN-BiLSTM

超参数 计算机科学 特征(语言学) 人工智能 卷积神经网络 趋同(经济学) 模式识别(心理学) 人工神经网络 语言学 经济增长 哲学 经济
作者
Yanyuan Wang,Zhenzhong Zhang,Youyun Wang,Lichun You,Guo Wei
出处
期刊:alexandria engineering journal [Elsevier BV]
卷期号:80: 229-240 被引量:8
标识
DOI:10.1016/j.aej.2023.08.039
摘要

Six-degrees of freedom (6-DOF) parallel mechanisms driven by switched reluctance motors (SRMs) can realize flexible control with high precision. Efficiency is an important indicator to measure the speed control system of SRMs. There are many characteristic factors affecting efficiency and strong nonlinear relationships between different characteristic parameters, which makes it difficult for analytical models and traditional neural network models to express their spatial correlation. For this reason, a convolutional neural network (CNN)-bidirectional long short-term memory network (BiLSTM) efficiency regression prediction model (CNN-BiLSTM-SENet) that integrates the attention mechanism (SENet) is proposed. Firstly, customize a formula for sensitivity analysis to screen characteristic parameters of efficiency. Secondly, build the CNN-BiLSTM-SENet model and use sparrow search algorithm (SSA) for hyperparameter optimization, input data to CNN to extract high-dimensional feature vectors that reflect complex changing relationships between features and efficiency while establishing feature channels. Embed the SENet to adaptively perceive and assign different weights to the feature channels, enhancing the influence of key features. Input the feature vectors outputted by the front-end network to BiLSTM to bidirectionally learn coupling relationships between sequences and complete regression prediction. Finally, propose improved northern goshawk optimization (MNGO) to solve the regression model to obtain the maximum efficiency and corresponding characteristic parameters. The results proved that the SSA-optimized CNN-BiLSTM-SENet model has higher fitting exactness and better prediction effect for efficiency regression prediction, and the MNGO also has stronger search ability and faster convergence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TanXu发布了新的文献求助10
刚刚
DXDXJX完成签到 ,获得积分10
1秒前
吾系渣渣辉完成签到 ,获得积分10
2秒前
SYLH应助冷艳的冬萱采纳,获得20
2秒前
cloud完成签到,获得积分10
4秒前
yanmh完成签到,获得积分10
7秒前
7秒前
一小位同学完成签到,获得积分10
8秒前
任全强完成签到,获得积分10
9秒前
小高同学完成签到,获得积分10
9秒前
华仔应助TanXu采纳,获得20
9秒前
量子星尘发布了新的文献求助10
10秒前
明理夏槐完成签到,获得积分20
11秒前
crave发布了新的文献求助10
12秒前
明天过后完成签到,获得积分10
12秒前
skysleeper完成签到,获得积分10
13秒前
耍酷的梦桃完成签到,获得积分10
14秒前
龙在天涯完成签到,获得积分10
14秒前
16秒前
成就绮琴完成签到 ,获得积分10
17秒前
12366666完成签到,获得积分10
17秒前
阿弹完成签到,获得积分10
17秒前
shining完成签到,获得积分10
18秒前
过儿完成签到 ,获得积分10
18秒前
Silence完成签到,获得积分0
19秒前
livra1058完成签到,获得积分10
19秒前
简单的易云完成签到,获得积分10
20秒前
无味完成签到,获得积分10
22秒前
qiqi完成签到,获得积分10
23秒前
gnosis发布了新的文献求助30
24秒前
lllllllll完成签到,获得积分10
24秒前
笑傲江湖完成签到,获得积分10
24秒前
狠毒的小龙虾完成签到,获得积分10
24秒前
过昭关完成签到,获得积分10
25秒前
黑粉头头完成签到,获得积分10
25秒前
lxlcx完成签到,获得积分0
26秒前
zhuxd完成签到,获得积分10
26秒前
gy完成签到,获得积分20
26秒前
沉静的浩然完成签到 ,获得积分10
27秒前
李李李李李完成签到,获得积分10
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008855
求助须知:如何正确求助?哪些是违规求助? 3548508
关于积分的说明 11299006
捐赠科研通 3283151
什么是DOI,文献DOI怎么找? 1810290
邀请新用户注册赠送积分活动 886000
科研通“疑难数据库(出版商)”最低求助积分说明 811220