清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Modeling and structural optimization design of switched reluctance motor based on fusing attention mechanism and CNN-BiLSTM

超参数 计算机科学 特征(语言学) 人工智能 卷积神经网络 趋同(经济学) 模式识别(心理学) 人工神经网络 语言学 经济 经济增长 哲学
作者
Yanyuan Wang,Zhenzhong Zhang,Youyun Wang,Lichun You,Guo Wei
出处
期刊:alexandria engineering journal [Elsevier]
卷期号:80: 229-240 被引量:8
标识
DOI:10.1016/j.aej.2023.08.039
摘要

Six-degrees of freedom (6-DOF) parallel mechanisms driven by switched reluctance motors (SRMs) can realize flexible control with high precision. Efficiency is an important indicator to measure the speed control system of SRMs. There are many characteristic factors affecting efficiency and strong nonlinear relationships between different characteristic parameters, which makes it difficult for analytical models and traditional neural network models to express their spatial correlation. For this reason, a convolutional neural network (CNN)-bidirectional long short-term memory network (BiLSTM) efficiency regression prediction model (CNN-BiLSTM-SENet) that integrates the attention mechanism (SENet) is proposed. Firstly, customize a formula for sensitivity analysis to screen characteristic parameters of efficiency. Secondly, build the CNN-BiLSTM-SENet model and use sparrow search algorithm (SSA) for hyperparameter optimization, input data to CNN to extract high-dimensional feature vectors that reflect complex changing relationships between features and efficiency while establishing feature channels. Embed the SENet to adaptively perceive and assign different weights to the feature channels, enhancing the influence of key features. Input the feature vectors outputted by the front-end network to BiLSTM to bidirectionally learn coupling relationships between sequences and complete regression prediction. Finally, propose improved northern goshawk optimization (MNGO) to solve the regression model to obtain the maximum efficiency and corresponding characteristic parameters. The results proved that the SSA-optimized CNN-BiLSTM-SENet model has higher fitting exactness and better prediction effect for efficiency regression prediction, and the MNGO also has stronger search ability and faster convergence.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
曾经问雁发布了新的文献求助10
4秒前
9秒前
13秒前
陈尹蓝完成签到 ,获得积分10
28秒前
30秒前
乐乐应助Marshall采纳,获得10
1分钟前
1分钟前
Marshall发布了新的文献求助10
1分钟前
锦鲤完成签到,获得积分10
1分钟前
科研通AI6.1应助twk采纳,获得10
1分钟前
2分钟前
大医仁心完成签到 ,获得积分10
2分钟前
NattyPoe应助科研通管家采纳,获得10
2分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
田様应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
卓天宇完成签到,获得积分0
2分钟前
量子星尘发布了新的文献求助50
2分钟前
3分钟前
小李老博完成签到,获得积分10
3分钟前
在水一方应助科研通管家采纳,获得10
4分钟前
NattyPoe应助科研通管家采纳,获得10
4分钟前
4分钟前
两个榴莲完成签到,获得积分0
4分钟前
4分钟前
魏猛完成签到,获得积分10
5分钟前
ilihe应助dd采纳,获得10
6分钟前
简单发布了新的文献求助20
6分钟前
dd完成签到,获得积分10
6分钟前
简单发布了新的文献求助20
7分钟前
开心每一天完成签到 ,获得积分10
7分钟前
无极微光应助简单采纳,获得20
7分钟前
8分钟前
Mio发布了新的文献求助10
8分钟前
顾矜应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
乐乐应助科研通管家采纳,获得10
8分钟前
三日发布了新的文献求助10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788848
求助须知:如何正确求助?哪些是违规求助? 5712796
关于积分的说明 15473966
捐赠科研通 4916884
什么是DOI,文献DOI怎么找? 2646597
邀请新用户注册赠送积分活动 1594281
关于科研通互助平台的介绍 1548701