Modeling and structural optimization design of switched reluctance motor based on fusing attention mechanism and CNN-BiLSTM

超参数 计算机科学 特征(语言学) 人工智能 卷积神经网络 趋同(经济学) 模式识别(心理学) 人工神经网络 语言学 经济 经济增长 哲学
作者
Yanyuan Wang,Zhenzhong Zhang,Youyun Wang,Lichun You,Guo Wei
出处
期刊:alexandria engineering journal [Elsevier]
卷期号:80: 229-240 被引量:8
标识
DOI:10.1016/j.aej.2023.08.039
摘要

Six-degrees of freedom (6-DOF) parallel mechanisms driven by switched reluctance motors (SRMs) can realize flexible control with high precision. Efficiency is an important indicator to measure the speed control system of SRMs. There are many characteristic factors affecting efficiency and strong nonlinear relationships between different characteristic parameters, which makes it difficult for analytical models and traditional neural network models to express their spatial correlation. For this reason, a convolutional neural network (CNN)-bidirectional long short-term memory network (BiLSTM) efficiency regression prediction model (CNN-BiLSTM-SENet) that integrates the attention mechanism (SENet) is proposed. Firstly, customize a formula for sensitivity analysis to screen characteristic parameters of efficiency. Secondly, build the CNN-BiLSTM-SENet model and use sparrow search algorithm (SSA) for hyperparameter optimization, input data to CNN to extract high-dimensional feature vectors that reflect complex changing relationships between features and efficiency while establishing feature channels. Embed the SENet to adaptively perceive and assign different weights to the feature channels, enhancing the influence of key features. Input the feature vectors outputted by the front-end network to BiLSTM to bidirectionally learn coupling relationships between sequences and complete regression prediction. Finally, propose improved northern goshawk optimization (MNGO) to solve the regression model to obtain the maximum efficiency and corresponding characteristic parameters. The results proved that the SSA-optimized CNN-BiLSTM-SENet model has higher fitting exactness and better prediction effect for efficiency regression prediction, and the MNGO also has stronger search ability and faster convergence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老实的半山完成签到,获得积分10
刚刚
指纹抒写年轮完成签到,获得积分10
刚刚
愉快的哈密瓜完成签到,获得积分10
刚刚
小小发布了新的文献求助10
刚刚
小二郎应助成就缘分采纳,获得10
刚刚
1秒前
看看文献吧完成签到,获得积分10
1秒前
啵啵发布了新的文献求助10
1秒前
2秒前
初吻还在发布了新的文献求助10
2秒前
哇哦发布了新的文献求助10
3秒前
李唯佳发布了新的文献求助10
3秒前
3秒前
酷波er应助渊思采纳,获得10
3秒前
3秒前
罗mian完成签到,获得积分10
4秒前
4秒前
WUJIAYU完成签到 ,获得积分10
5秒前
小蘑菇应助小汤圆采纳,获得10
6秒前
认真的小熊饼干完成签到,获得积分10
6秒前
Grayball应助蒙开心采纳,获得10
6秒前
6秒前
真开心完成签到,获得积分10
6秒前
Ava应助点点采纳,获得10
6秒前
Seldomyg完成签到 ,获得积分10
7秒前
鲸是海蓝色关注了科研通微信公众号
7秒前
南亭完成签到,获得积分10
7秒前
Orange应助o10采纳,获得10
8秒前
8秒前
8秒前
小王发布了新的文献求助10
9秒前
初吻还在完成签到,获得积分10
10秒前
MADKAI发布了新的文献求助10
10秒前
Asss完成签到,获得积分10
10秒前
10秒前
时光友岸完成签到,获得积分10
11秒前
12秒前
昭昭完成签到,获得积分10
12秒前
niu1完成签到,获得积分10
13秒前
铃兰完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672