Tomato Recognition and Localization Method Based on Improved YOLOv5n-seg Model and Binocular Stereo Vision

人工智能 计算机视觉 点云 计算机科学 分割 质心 匹配(统计) 点(几何) 模式识别(心理学) 数学 统计 几何学
作者
Shuhe Zheng,Yang Liu,Wuxiong Weng,Xuexin Jia,Shilong Yu,Zuoxun Wu
出处
期刊:Agronomy [MDPI AG]
卷期号:13 (9): 2339-2339 被引量:14
标识
DOI:10.3390/agronomy13092339
摘要

Recognition and localization of fruits are key components to achieve automated fruit picking. However, current neural-network-based fruit recognition algorithms have disadvantages such as high complexity. Traditional stereo matching algorithms also have low accuracy. To solve these problems, this study targeting greenhouse tomatoes proposed an algorithm framework based on YOLO-TomatoSeg, a lightweight tomato instance segmentation model improved from YOLOv5n-seg, and an accurate tomato localization approach using RAFT-Stereo disparity estimation and least squares point cloud fitting. First, binocular tomato images were captured using a binocular camera system. The left image was processed by YOLO-TomatoSeg to segment tomato instances and generate masks. Concurrently, RAFT-Stereo estimated image disparity for computing the original depth point cloud. Then, the point cloud was clipped by tomato masks to isolate tomato point clouds, which were further preprocessed. Finally, a least squares sphere fitting method estimated the 3D centroid co-ordinates and radii of tomatoes by fitting the tomato point clouds to spherical models. The experimental results showed that, in the tomato instance segmentation stage, the YOLO-TomatoSeg model replaced the Backbone network of YOLOv5n-seg with the building blocks of ShuffleNetV2 and incorporated an SE attention module, which reduced model complexity while improving model segmentation accuracy. Ultimately, the YOLO-TomatoSeg model achieved an AP of 99.01% with a size of only 2.52 MB, significantly outperforming mainstream instance segmentation models such as Mask R-CNN (98.30% AP) and YOLACT (96.49% AP). The model size was reduced by 68.3% compared to the original YOLOv5n-seg model. In the tomato localization stage, at the range of 280 mm to 480 mm, the average error of the tomato centroid localization was affected by occlusion and sunlight conditions. The maximum average localization error was ±5.0 mm, meeting the localization accuracy requirements of the tomato-picking robots. This study developed a lightweight tomato instance segmentation model and achieved accurate localization of tomato, which can facilitate research, development, and application of fruit-picking robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助吧嗒嗒采纳,获得10
刚刚
Niniiii发布了新的文献求助10
刚刚
啸锋完成签到 ,获得积分10
刚刚
chemly完成签到 ,获得积分10
1秒前
1秒前
小马甲应助独特的高山采纳,获得10
3秒前
lm完成签到,获得积分10
6秒前
伏月八发布了新的文献求助10
7秒前
碳酸盐完成签到,获得积分10
8秒前
SciGPT应助123采纳,获得10
9秒前
加油鸭完成签到 ,获得积分10
10秒前
10秒前
搜集达人应助元宵采纳,获得10
11秒前
13秒前
hxj完成签到 ,获得积分20
14秒前
大模型应助伏月八采纳,获得10
15秒前
Qn完成签到,获得积分20
15秒前
Orange应助碳酸盐采纳,获得10
15秒前
ppa完成签到,获得积分10
16秒前
吧嗒嗒发布了新的文献求助10
17秒前
啊啊啊发布了新的文献求助10
18秒前
18秒前
Ava应助Qn采纳,获得30
18秒前
24K纯帅完成签到,获得积分10
18秒前
19秒前
19秒前
20秒前
siqi完成签到 ,获得积分20
22秒前
谭821发布了新的文献求助10
24秒前
怜梦发布了新的文献求助10
24秒前
25秒前
小詹完成签到,获得积分10
25秒前
夙与完成签到,获得积分10
28秒前
谭821完成签到,获得积分10
29秒前
34秒前
Nature完成签到,获得积分10
35秒前
谷高高完成签到 ,获得积分10
35秒前
36秒前
碳酸盐发布了新的文献求助10
38秒前
39秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462763
求助须知:如何正确求助?哪些是违规求助? 3056257
关于积分的说明 9051348
捐赠科研通 2745940
什么是DOI,文献DOI怎么找? 1506717
科研通“疑难数据库(出版商)”最低求助积分说明 696194
邀请新用户注册赠送积分活动 695720