Adaptive detection of impact signals with two-dimensional piecewise tri-stable stochastic resonance and its application in bearing fault diagnosis

随机共振 分段 算法 信号(编程语言) 计算机科学 功能(生物学) 断层(地质) 噪音(视频) 控制理论(社会学) 数学 人工智能 数学分析 控制(管理) 进化生物学 地震学 图像(数学) 生物 程序设计语言 地质学
作者
Gang Zhang,Xiaoxiao Huang,Jiaqi Xu,Zhaorui Li
出处
期刊:Applied Acoustics [Elsevier]
卷期号:214: 109702-109702 被引量:11
标识
DOI:10.1016/j.apacoust.2023.109702
摘要

In this paper, we introduce an innovative method known as Adaptive Two-Dimensional Piecewise Tri-Stable Stochastic Resonance (TDPTSR) and discuss its applicability in extracting weak fault features. Initially, addressing the saturation issue of the Standard Tri-Stable Stochastic Resonance (STSR) system, we construct a novel piecewise tri-stable potential function. This function independently adjusts the depth and width of potential wells. We explore the particle output characteristics of the Piecewise Tri-Stable Stochastic Resonance (PTSR) system using the fourth-order Runge-Kutta algorithm. Subsequently, we delve into the performance analysis of the TDPTSR system. Leveraging adiabatic approximation theory, we derive the equivalent potential function, steady-state probability density (SPD), mean first-pass time (MFPT), and output signal-to-noise ratio (SNR) of the TDPTSR. We also investigate the impact of changes in system parameters on these metrics. Additionally, drawing from kurtosis and cosine similarity properties, we introduce a Modified Kurtosis Index (MKC) as a measurement index for impact signal detection. We propose a method for impact signal feature extraction by integrating MKC with the TDPTSR system. Simulation analysis demonstrates the suitability of MKC as an index for quantifying Stochastic Resonance and the superior detection capability of the TDPTSR system. Finally, we apply TDPTSR to the fault diagnosis of two types of bearings, optimizing system parameters using a genetic algorithm (GA). Comparative analysis with STSR and PTSR confirms that our proposed method in this paper yields further improvements in Signal-to-Noise Ratio Improvement (SNRI), higher spectral peak magnitude (Amout) at characteristic frequencies, and increased recognition quantity (Δ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨摇伽发布了新的文献求助10
1秒前
科目三应助皓月繁星采纳,获得10
1秒前
tomato完成签到,获得积分20
3秒前
CodeCraft应助缘一采纳,获得10
4秒前
小二郎应助刘铭晨采纳,获得10
4秒前
4秒前
大个应助风雨1210采纳,获得10
4秒前
一壶清酒完成签到,获得积分10
4秒前
5秒前
tomato发布了新的文献求助30
6秒前
陈莹发布了新的文献求助10
7秒前
8秒前
8秒前
小狗同志006完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
皓月繁星完成签到,获得积分10
9秒前
ZeJ发布了新的文献求助10
10秒前
10秒前
11秒前
usrcu完成签到 ,获得积分10
11秒前
122x应助赖道之采纳,获得10
12秒前
厉不厉害你坤哥完成签到,获得积分10
12秒前
wuzhizhiya发布了新的文献求助10
13秒前
13秒前
13秒前
皓月繁星发布了新的文献求助10
14秒前
14秒前
迷路白桃发布了新的文献求助20
14秒前
ZeJ完成签到,获得积分10
15秒前
景别发布了新的文献求助10
15秒前
15秒前
NexusExplorer应助陈莹采纳,获得10
16秒前
GXY发布了新的文献求助10
16秒前
嘟嘟发布了新的文献求助10
17秒前
19秒前
Akim应助单纯的雅香采纳,获得10
19秒前
20秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808