阴极
材料科学
电解质
锂(药物)
化学工程
接口(物质)
固态
电极
无机化学
纳米技术
工程物理
复合材料
化学
物理化学
润湿
工程类
医学
坐滴法
内分泌学
作者
Bingkai Zhang,Zhiwei He,Tiefeng Liu,Zeheng Li,Shaojian Zhang,Wenguang Zhao,Zu‐Wei Yin,Zengqing Zhuo,Ming‐Jian Zhang,Feng Pan,Shanqing Zhang,Zhan Lin,Jun Lü
标识
DOI:10.1002/adma.202305748
摘要
Abstract The interfacial compatibility between cathodes and sulfide solid‐electrolytes (SEs) is a critical limiting factor of electrochemical performance in all‐solid‐state lithium‐ion batteries (ASSLBs). This work presents a gas–solid interface reduction reaction (GSIRR), aiming to mitigate the reactivity of surface oxygen by inducing a surface reconstruction layer (SRL) . The application of a SRL, CoO/Li 2 CO 3 , onto LiCoO 2 (LCO) cathode results in impressive outcomes, including high capacity (149.7 mAh g −1 ), remarkable cyclability (retention of 84.63% over 400 cycles at 0.2 C), outstanding rate capability (86.1 mAh g −1 at 2 C), and exceptional stability in high‐loading cathode (28.97 and 23.45 mg cm −2 ) within ASSLBs. Furthermore, the SRL CoO/Li 2 CO 3 enhances the interfacial stability between LCO and Li 10 GeP 2 S 12 as well as Li 3 PS 4 SEs. Significantly, the experiments suggest that the GSIRR mechanism can be broadly applied, not only to LCO cathodes but also to LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathodes and other reducing gases such as H 2 S and CO, indicating its practical universality. This study highlights the significant influence of the surface chemistry of the oxide cathode on interfacial compatibility, and introduces a surface reconstruction strategy based on the GSIRR process as a promising avenue for designing enhanced ASSLBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI