Multidrone Parcel Delivery via Public Vehicles: A Joint Optimization Approach

无人机 计算机科学 卡车 调度(生产过程) 公共交通 灵活性(工程) 布线(电子设计自动化) 计算机网络 运输工程 实时计算 运筹学 工程类 汽车工程 运营管理 遗传学 统计 数学 生物
作者
Tianping Deng,Xiaohui Xu,Zhiqing Zou,Wei Liu,Desheng Wang,Menglan Hu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (6): 9312-9323 被引量:1
标识
DOI:10.1109/jiot.2023.3323704
摘要

As one of the promising self-powered sensors on Internet of Things (IoT) platforms, unmanned aerial vehicles (UAVs) have attracted much attention for parcel delivery. Their high flexibility and low cost facilitate last-one-mile delivery. However, the limitations of battery capacity and payloads prevent drones from delivering independently over large scales. In this case, it is available to employ vehicles to assist the drones. The vehicles can be private-own trucks and vehicles in public transportation systems (PTSs). Compared to trucks, PTSs such as buses and trains do not require extra operating and fuel costs. Given these advantages, this paper adopts PTSs to assist UAVs in parcel delivery. Nevertheless, the fixed routes and schedules of public vehicles pose new challenges to the Routing and Scheduling problem for PTS-assisted Multi-drone parcel Delivery (RSPMD). To tackle the problem, we propose a novel routing and scheduling algorithm, referred to as the PTS-assisted multi-Drone parcel Delivery (PDD) algorithm. Considering the schedules of the public vehicles, the algorithm jointly optimizes the distance and time cost of drones by iteratively combining parts of existing routes. To the best of our knowledge, we are the first to address RSPMD in which UAVs ride public vehicles to deliver parcels in a wide area. Simulation results are finally presented to demonstrate that PDD outperforms existing solutions in terms of effectiveness and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NN大可爱完成签到 ,获得积分10
1秒前
2秒前
3秒前
Ma_80814完成签到 ,获得积分10
4秒前
wyh发布了新的文献求助50
5秒前
刘先森完成签到,获得积分10
6秒前
大个应助123采纳,获得10
6秒前
jijijibibibi完成签到,获得积分10
6秒前
8秒前
9秒前
Akim应助静越采纳,获得10
9秒前
怡然的友容完成签到,获得积分10
11秒前
华仔应助Tonsil01采纳,获得10
11秒前
12秒前
smileam完成签到 ,获得积分20
12秒前
15秒前
晨曦将至发布了新的文献求助10
15秒前
小文章完成签到,获得积分10
15秒前
15秒前
1b发布了新的文献求助10
16秒前
敏感的梦桃完成签到,获得积分10
17秒前
游鱼完成签到 ,获得积分10
18秒前
一啊鸭完成签到 ,获得积分10
19秒前
bellis发布了新的文献求助30
20秒前
小文章发布了新的文献求助20
20秒前
lll完成签到,获得积分10
20秒前
21秒前
憨小郁完成签到,获得积分10
23秒前
24秒前
Yin完成签到,获得积分10
26秒前
28秒前
29秒前
daydayup发布了新的文献求助10
31秒前
从容芮应助123采纳,获得10
33秒前
34秒前
34秒前
美满的若风完成签到 ,获得积分10
34秒前
yuan完成签到,获得积分10
35秒前
35秒前
傻子与白痴完成签到,获得积分20
35秒前
高分求助中
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
Ethnicities: Media, Health, and Coping 700
Development of a new synthetic process for the synthesis of (S)-methadone and (S)- and (R)-isomethadone as NMDA receptor antagonists for the treatment of depression 500
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3089196
求助须知:如何正确求助?哪些是违规求助? 2741308
关于积分的说明 7564396
捐赠科研通 2391558
什么是DOI,文献DOI怎么找? 1268308
科研通“疑难数据库(出版商)”最低求助积分说明 614044
版权声明 598684