Multidrone Parcel Delivery via Public Vehicles: A Joint Optimization Approach

计算机科学 接头(建筑物) 计算机网络 工程类 建筑工程
作者
Tianping Deng,Xiaohui Xu,Zhiqing Zou,Wei Liu,Desheng Wang,Menglan Hu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (6): 9312-9323 被引量:6
标识
DOI:10.1109/jiot.2023.3323704
摘要

As one of the promising self-powered sensors on Internet of Things (IoT) platforms, unmanned aerial vehicles (UAVs) have attracted much attention for parcel delivery. Their high flexibility and low cost facilitate last-one-mile delivery. However, the limitations of battery capacity and payloads prevent drones from delivering independently over large scales. In this case, it is available to employ vehicles to assist the drones. The vehicles can be private-own trucks and vehicles in public transportation systems (PTSs). Compared to trucks, PTSs, such as buses and trains, do not require extra operating and fuel costs. Given these advantages, this article adopts PTSs to assist UAVs in parcel delivery. Nevertheless, the fixed routes and schedules of public vehicles pose new challenges to the routing and scheduling problem for PTS-assisted multidrone parcel delivery (RSPMD). To tackle the problem, we propose a novel routing and scheduling algorithm, referred to as the PTS-assisted multidrone parcel delivery (PDD) algorithm. Considering the schedules of the public vehicles, the algorithm jointly optimizes the distance and time cost of drones by iteratively combining parts of existing routes. To the best of our knowledge, we are the first to address RSPMD in which UAVs ride public vehicles to deliver parcels in a wide area. Simulation results are finally presented to demonstrate that PDD outperforms existing solutions in terms of effectiveness and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzt完成签到,获得积分10
2秒前
张小汉发布了新的文献求助30
3秒前
二十四发布了新的文献求助10
3秒前
赘婿应助junzilan采纳,获得10
3秒前
FashionBoy应助勤恳的雨文采纳,获得10
3秒前
aaa完成签到,获得积分10
4秒前
5秒前
11111完成签到,获得积分20
6秒前
仔wang完成签到,获得积分10
6秒前
8秒前
忘羡222发布了新的文献求助20
8秒前
8秒前
温暖涫完成签到,获得积分10
10秒前
11111发布了新的文献求助10
10秒前
健忘的牛排完成签到,获得积分10
11秒前
wmmm完成签到,获得积分10
11秒前
Akim应助爱吃泡芙采纳,获得10
11秒前
老迟到的书雁完成签到 ,获得积分10
11秒前
11秒前
正经俠发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
学科共进完成签到,获得积分10
14秒前
百草27完成签到,获得积分10
14秒前
15秒前
16秒前
17秒前
绵马紫萁发布了新的文献求助10
17秒前
18秒前
fzhou完成签到 ,获得积分10
18秒前
尘雾发布了新的文献求助10
18秒前
19秒前
一一发布了新的文献求助20
19秒前
19秒前
Aixia完成签到 ,获得积分10
20秒前
葡萄糖完成签到,获得积分10
20秒前
哈哈完成签到,获得积分10
20秒前
在水一方应助CC采纳,获得10
20秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824