A Robust Database Watermarking Scheme That Preserves Statistical Characteristics

数字水印 计算机科学 水印 数据挖掘 关系数据库 数据库 情报检索 人工智能 图像(数学)
作者
Zhiwen Ren,Han Fang,Jie Zhang,Zehua Ma,Ronghao Lin,Weiming Zhang,Nenghai Yu
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tkde.2023.3324932
摘要

Database watermarking can be used for copyright verification and leakage traceability, effectively protecting the security of the database. However, the existing watermarking schemes commonly embed watermarks by modifying the original data, which changes the statistical characteristics and affects the statistical analysis of the database. Therefore, this paper proposes SCPW, a S tatistical C haracteristics P reserving robust database W atermarking framework. First, we perform a theoretical analysis and propose a data modification scheme maintaining the statistical characteristics unchanged. Then, we establish the correspondence between the data and the watermarks that need to be embedded in it by grouping. Finally, the watermark message is embedded into the database through data verification and modification. Specifically, for data that needs to be watermarked, we first verify whether the potential watermark bits extracted from the data are the same as bits that need to be embedded. If they are the same, we regard this original data, usually a floating point number, as a “good number” and do not modify it. Otherwise, we modify the data until it becomes a “good number” using a data modification scheme that preserves the statistical characteristics proposed by the theoretical analysis. In addition, we also use the genetic algorithm to optimize the grouping results and increase the proportion of “good number”, thereby reducing the proportion of data that needs to be modified and further reducing distortion. To our best knowledge, SCPW is the first watermarking scheme that ensures the preservation of statistical characteristics, and the experimental results also prove its excellent ability to preserve statistical characteristics compared to existing schemes. Moreover, experiments also illustrate that our method is robust against a wide range of attacks. When under deletion attack (deletion rate = 90%), the bit error rate of watermark extraction is only 0.8%, which is more than 12% lower than the current best method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
whatever举报熊熊求助涉嫌违规
2秒前
研友_VZG7GZ应助Cinatolii采纳,获得10
2秒前
领导范儿应助回到未来采纳,获得10
3秒前
3秒前
3秒前
3秒前
Hello应助dreamer采纳,获得10
4秒前
方文杰完成签到,获得积分10
4秒前
田様应助前交叉还在采纳,获得10
4秒前
4秒前
4秒前
今后应助小学徒采纳,获得10
4秒前
阿彤发布了新的文献求助10
5秒前
友00000发布了新的文献求助10
5秒前
5秒前
醉熏的朋友完成签到 ,获得积分10
5秒前
朴素若枫完成签到,获得积分10
5秒前
机智ss发布了新的文献求助10
5秒前
6秒前
NIni妮发布了新的文献求助10
8秒前
jjjjj发布了新的文献求助10
8秒前
9秒前
Jasper应助林志文采纳,获得10
9秒前
脑洞疼应助foxp3采纳,获得10
9秒前
10秒前
10秒前
11秒前
北海发布了新的文献求助10
11秒前
11秒前
11秒前
搜集达人应助拼搏飞柏采纳,获得10
11秒前
11秒前
12秒前
咖飞完成签到,获得积分10
12秒前
暮辞发布了新的文献求助10
12秒前
12秒前
调研昵称发布了新的文献求助10
13秒前
14秒前
酷波er应助刻苦冰颜采纳,获得10
14秒前
Lynn驳回了36456657应助
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144482
求助须知:如何正确求助?哪些是违规求助? 2796014
关于积分的说明 7817418
捐赠科研通 2452067
什么是DOI,文献DOI怎么找? 1304867
科研通“疑难数据库(出版商)”最低求助积分说明 627330
版权声明 601432