A Robust Database Watermarking Scheme That Preserves Statistical Characteristics

数字水印 计算机科学 水印 数据挖掘 关系数据库 数据库 情报检索 人工智能 图像(数学)
作者
Zhiwen Ren,Han Fang,Jie Zhang,Zehua Ma,Ronghao Lin,Weiming Zhang,Nenghai Yu
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-13
标识
DOI:10.1109/tkde.2023.3324932
摘要

Database watermarking can be used for copyright verification and leakage traceability, effectively protecting the security of the database. However, the existing watermarking schemes commonly embed watermarks by modifying the original data, which changes the statistical characteristics and affects the statistical analysis of the database. Therefore, this paper proposes SCPW, a S tatistical C haracteristics P reserving robust database W atermarking framework. First, we perform a theoretical analysis and propose a data modification scheme maintaining the statistical characteristics unchanged. Then, we establish the correspondence between the data and the watermarks that need to be embedded in it by grouping. Finally, the watermark message is embedded into the database through data verification and modification. Specifically, for data that needs to be watermarked, we first verify whether the potential watermark bits extracted from the data are the same as bits that need to be embedded. If they are the same, we regard this original data, usually a floating point number, as a “good number” and do not modify it. Otherwise, we modify the data until it becomes a “good number” using a data modification scheme that preserves the statistical characteristics proposed by the theoretical analysis. In addition, we also use the genetic algorithm to optimize the grouping results and increase the proportion of “good number”, thereby reducing the proportion of data that needs to be modified and further reducing distortion. To our best knowledge, SCPW is the first watermarking scheme that ensures the preservation of statistical characteristics, and the experimental results also prove its excellent ability to preserve statistical characteristics compared to existing schemes. Moreover, experiments also illustrate that our method is robust against a wide range of attacks. When under deletion attack (deletion rate = 90%), the bit error rate of watermark extraction is only 0.8%, which is more than 12% lower than the current best method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuyiyi完成签到,获得积分10
1秒前
鳗鱼友灵发布了新的文献求助30
1秒前
木头人完成签到,获得积分10
1秒前
neil完成签到,获得积分10
2秒前
化工波比完成签到,获得积分10
2秒前
微笑的天抒完成签到,获得积分10
2秒前
2秒前
香蕉觅云应助gxudmy采纳,获得10
3秒前
桢桢树发布了新的文献求助10
3秒前
醉熏的天与应助liao采纳,获得10
3秒前
时光友岸完成签到,获得积分10
3秒前
棋士应助小林采纳,获得10
4秒前
学谦完成签到,获得积分10
4秒前
我现在弱得可怕完成签到,获得积分10
4秒前
chendahuanhuan完成签到,获得积分10
5秒前
ding应助Hh采纳,获得10
5秒前
吴建文完成签到 ,获得积分10
5秒前
源源源完成签到 ,获得积分10
5秒前
cfsyyfujia完成签到 ,获得积分10
5秒前
夏姬宁静完成签到,获得积分10
6秒前
胡凉水完成签到,获得积分10
6秒前
2425完成签到,获得积分20
6秒前
Arthur发布了新的文献求助10
7秒前
7秒前
简单花花完成签到,获得积分10
8秒前
园田真理发布了新的文献求助10
9秒前
9秒前
9秒前
11秒前
11秒前
Owen应助科研通管家采纳,获得10
11秒前
Hightowerliu18完成签到,获得积分0
11秒前
王聪颖完成签到,获得积分10
11秒前
springlover完成签到,获得积分0
12秒前
Akim应助桢桢树采纳,获得10
12秒前
害怕的小伙完成签到,获得积分10
13秒前
zh完成签到,获得积分10
13秒前
流流124141完成签到,获得积分10
13秒前
彭于晏应助青青草采纳,获得10
14秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950076
求助须知:如何正确求助?哪些是违规求助? 3495418
关于积分的说明 11077056
捐赠科研通 3225984
什么是DOI,文献DOI怎么找? 1783357
邀请新用户注册赠送积分活动 867663
科研通“疑难数据库(出版商)”最低求助积分说明 800855