An attention-based multi-modal MRI fusion model for major depressive disorder diagnosis

重性抑郁障碍 深度学习 人工智能 神经影像学 功能磁共振成像 计算机科学 情态动词 磁共振成像 模式识别(心理学) 模式 心理学 机器学习 医学 神经科学 放射科 认知 高分子化学 社会科学 化学 社会学
作者
Guowei Zheng,Weihao Zheng,Yu Zhang,Junyu Wang,Miao Chen,Yin Wang,Tianhong Cai,Zhijun Yao,Bin Hu
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (6): 066005-066005 被引量:5
标识
DOI:10.1088/1741-2552/ad038c
摘要

Abstract Objective. Major depressive disorder (MDD) is one of the biggest threats to human mental health. MDD is characterized by aberrant changes in both structure and function of the brain. Although recent studies have developed some deep learning models based on multi-modal magnetic resonance imaging (MRI) for MDD diagnosis, the latent associations between deep features derived from different modalities were largely unexplored by previous studies, which we hypothesized may have potential benefits in improving the diagnostic accuracy of MDD. Approach. In this study, we proposed a novel deep learning model that fused both structural MRI (sMRI) and resting-state MRI (rs-fMRI) data to enhance the diagnosis of MDD by capturing the interactions between deep features extracted from different modalities. Specifically, we first employed a brain function encoder (BFE) and a brain structure encoder (BSE) to extract the deep features from fMRI and sMRI, respectively. Then, we designed a function and structure co-attention fusion (FSCF) module that captured inter-modal interactions and adaptively fused multi-modal deep features for MDD diagnosis. Main results. This model was evaluated on a large cohort and achieved a high classification accuracy of 75.2% for MDD diagnosis. Moreover, the attention distribution of the FSCF module assigned higher attention weights to structural features than functional features for diagnosing MDD. Significance. The high classification accuracy highlights the effectiveness and potential clinical of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Leex发布了新的文献求助10
1秒前
3秒前
4秒前
科研通AI2S应助谦让的小姜采纳,获得10
6秒前
香蕉觅云应助玖梦采纳,获得10
6秒前
Tomato发布了新的文献求助10
7秒前
寒冷丹雪完成签到,获得积分10
7秒前
MS903完成签到 ,获得积分10
7秒前
慕青应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
852应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
顾矜应助哈哈哈采纳,获得10
11秒前
搜集达人应助Joyceban采纳,获得10
11秒前
尉迟衣发布了新的文献求助10
12秒前
四夕完成签到 ,获得积分10
13秒前
14秒前
852应助二指弹采纳,获得10
15秒前
CJW完成签到 ,获得积分10
15秒前
打打应助dingm2采纳,获得10
18秒前
史塔克发布了新的文献求助10
18秒前
20秒前
反杀闰土的猹完成签到,获得积分10
20秒前
哈哈哈完成签到,获得积分10
20秒前
尉迟衣完成签到,获得积分20
21秒前
redeem完成签到,获得积分10
21秒前
LK完成签到 ,获得积分10
21秒前
23秒前
JTchen完成签到,获得积分10
23秒前
23秒前
Joyceban发布了新的文献求助10
24秒前
可爱的函函应助轻松汲采纳,获得10
24秒前
Hello应助稳重元冬采纳,获得10
26秒前
wjw完成签到,获得积分10
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138641
求助须知:如何正确求助?哪些是违规求助? 2789658
关于积分的说明 7791857
捐赠科研通 2445999
什么是DOI,文献DOI怎么找? 1300813
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079