An attention-based multi-modal MRI fusion model for major depressive disorder diagnosis

重性抑郁障碍 深度学习 人工智能 神经影像学 功能磁共振成像 计算机科学 情态动词 磁共振成像 模式识别(心理学) 模式 心理学 机器学习 医学 神经科学 放射科 认知 高分子化学 社会科学 化学 社会学
作者
Guowei Zheng,Weihao Zheng,Yu Zhang,Junyu Wang,Miao Chen,Yin Wang,Tianhong Cai,Zhijun Yao,Bin Hu
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (6): 066005-066005 被引量:18
标识
DOI:10.1088/1741-2552/ad038c
摘要

Abstract Objective. Major depressive disorder (MDD) is one of the biggest threats to human mental health. MDD is characterized by aberrant changes in both structure and function of the brain. Although recent studies have developed some deep learning models based on multi-modal magnetic resonance imaging (MRI) for MDD diagnosis, the latent associations between deep features derived from different modalities were largely unexplored by previous studies, which we hypothesized may have potential benefits in improving the diagnostic accuracy of MDD. Approach. In this study, we proposed a novel deep learning model that fused both structural MRI (sMRI) and resting-state MRI (rs-fMRI) data to enhance the diagnosis of MDD by capturing the interactions between deep features extracted from different modalities. Specifically, we first employed a brain function encoder (BFE) and a brain structure encoder (BSE) to extract the deep features from fMRI and sMRI, respectively. Then, we designed a function and structure co-attention fusion (FSCF) module that captured inter-modal interactions and adaptively fused multi-modal deep features for MDD diagnosis. Main results. This model was evaluated on a large cohort and achieved a high classification accuracy of 75.2% for MDD diagnosis. Moreover, the attention distribution of the FSCF module assigned higher attention weights to structural features than functional features for diagnosing MDD. Significance. The high classification accuracy highlights the effectiveness and potential clinical of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wwww发布了新的文献求助20
1秒前
CipherSage应助哈哈采纳,获得10
1秒前
馨妈完成签到 ,获得积分10
1秒前
Akim应助调皮的巧凡采纳,获得10
1秒前
大模型应助能干的初瑶采纳,获得30
3秒前
3秒前
3秒前
小螃蟹发布了新的文献求助10
4秒前
4秒前
4秒前
Owen应助小渔呦呦采纳,获得10
5秒前
5秒前
7秒前
Li完成签到,获得积分10
7秒前
999完成签到,获得积分10
7秒前
8秒前
笑点低凝荷完成签到,获得积分10
8秒前
9秒前
9秒前
11秒前
xuanxuan完成签到 ,获得积分20
11秒前
量子星尘发布了新的文献求助10
12秒前
汕大华瑞喆完成签到,获得积分10
12秒前
香蕉觅云应助HJJHJH采纳,获得10
13秒前
杏子发布了新的文献求助10
13秒前
14秒前
黑米粥发布了新的文献求助10
14秒前
英姑应助风中沛柔采纳,获得30
14秒前
Anqiang发布了新的文献求助10
14秒前
lele完成签到 ,获得积分10
15秒前
15秒前
完美世界应助调皮的巧凡采纳,获得10
18秒前
19秒前
小螃蟹完成签到,获得积分10
19秒前
ding应助Vresty采纳,获得30
23秒前
Bond完成签到 ,获得积分10
23秒前
LEEJ完成签到,获得积分10
24秒前
SciGPT应助张小毛采纳,获得10
24秒前
科研通AI6应助小猪猪采纳,获得30
24秒前
CipherSage应助gdh采纳,获得10
25秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453677
求助须知:如何正确求助?哪些是违规求助? 4561217
关于积分的说明 14281209
捐赠科研通 4485189
什么是DOI,文献DOI怎么找? 2456535
邀请新用户注册赠送积分活动 1447259
关于科研通互助平台的介绍 1422687