Long-Range Correlation Supervision for Land-Cover Classification From Remote Sensing Images

遥感 土地覆盖 分割 判别式 像素 计算机科学 地点 模式识别(心理学) 航程(航空) 基本事实 一致性(知识库) 相关性 特征提取 人工智能 地质学 土地利用 数学 工程类 复合材料 几何学 材料科学 哲学 语言学 土木工程
作者
Dawen Yu,Shunping Ji
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:6
标识
DOI:10.1109/tgrs.2023.3324706
摘要

Long-range dependency modeling has been widely considered in modern deep learning-based semantic segmentation methods, especially those designed for large-size remote sensing images, to compensate the intrinsic locality of standard convolutions. However, in previous studies, the long-range dependency, modeled with an attention mechanism or transformer model, has been based on unsupervised learning, instead of explicit supervision from the objective ground truth (GT). In this article, we propose a novel supervised long-range correlation method for land-cover classification, called the supervised long-range correlation network (SLCNet), which is shown to be superior to the currently used unsupervised strategies. In SLCNet, pixels sharing the same category are considered highly correlated and those having different categories are less relevant, which can be easily supervised by the category consistency information available in the GT semantic segmentation map. Under such supervision, the recalibrated features are more consistent for pixels of the same category and more discriminative for pixels of other categories, regardless of their proximity. To complement the detailed information lacking in the global long-range correlation, we introduce an auxiliary adaptive receptive field feature extraction (ARFE) module, parallel to the long-range correlation module in the encoder, to capture finely detailed feature representations for multisize objects in multiscale remote sensing images. In addition, we apply multiscale side-output supervision and a hybrid loss function as local and global constraints to further boost the segmentation accuracy. Experiments were conducted on three public remote sensing datasets (the ISPRS Vaihingen dataset, the ISPRS Potsdam dataset, and the DeepGlobe dataset). Compared with the advanced segmentation methods from the computer vision, medicine, and remote sensing communities, the proposed SLCNet method achieved state-of-the-art performance on all the datasets. The code will be made available at gpcv.whu.edu.cn/data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊秋白完成签到,获得积分10
刚刚
rio发布了新的文献求助10
刚刚
自由语柳完成签到,获得积分20
1秒前
素简发布了新的文献求助10
1秒前
伴奏小胖发布了新的文献求助10
1秒前
wqq发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
jia0完成签到,获得积分10
3秒前
赘婿应助Sosoxu采纳,获得10
5秒前
脑洞疼应助楠楠采纳,获得10
5秒前
运敬完成签到 ,获得积分10
6秒前
机灵的冰珍完成签到,获得积分10
7秒前
亦绿发布了新的文献求助10
8秒前
9秒前
12秒前
小巧的傲易完成签到,获得积分10
13秒前
halogen发布了新的文献求助10
14秒前
sohee完成签到 ,获得积分20
14秒前
大气颜演完成签到,获得积分20
15秒前
bkagyin应助素简采纳,获得10
15秒前
英俊秋白发布了新的文献求助10
15秒前
zz完成签到,获得积分10
16秒前
王优秀完成签到,获得积分10
17秒前
17秒前
YangTzeePlus发布了新的文献求助10
18秒前
因一完成签到,获得积分10
19秒前
111完成签到,获得积分10
19秒前
NexusExplorer应助BANG采纳,获得10
19秒前
大气颜演发布了新的文献求助10
23秒前
23秒前
26秒前
CipherSage应助科西西采纳,获得10
28秒前
迅速冥茗发布了新的文献求助10
28秒前
28秒前
罗小罗同学完成签到,获得积分10
28秒前
静时完成签到,获得积分10
29秒前
evelsing发布了新的文献求助10
32秒前
Hello应助halogen采纳,获得10
34秒前
111发布了新的文献求助10
35秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979719
求助须知:如何正确求助?哪些是违规求助? 3523760
关于积分的说明 11218505
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800507
邀请新用户注册赠送积分活动 879117
科研通“疑难数据库(出版商)”最低求助积分说明 807182