亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Long-Range Correlation Supervision for Land-Cover Classification From Remote Sensing Images

遥感 土地覆盖 分割 判别式 像素 计算机科学 地点 模式识别(心理学) 航程(航空) 基本事实 一致性(知识库) 相关性 特征提取 人工智能 地质学 土地利用 数学 工程类 复合材料 几何学 材料科学 哲学 语言学 土木工程
作者
Dawen Yu,Shunping Ji
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:6
标识
DOI:10.1109/tgrs.2023.3324706
摘要

Long-range dependency modeling has been widely considered in modern deep learning-based semantic segmentation methods, especially those designed for large-size remote sensing images, to compensate the intrinsic locality of standard convolutions. However, in previous studies, the long-range dependency, modeled with an attention mechanism or transformer model, has been based on unsupervised learning, instead of explicit supervision from the objective ground truth (GT). In this article, we propose a novel supervised long-range correlation method for land-cover classification, called the supervised long-range correlation network (SLCNet), which is shown to be superior to the currently used unsupervised strategies. In SLCNet, pixels sharing the same category are considered highly correlated and those having different categories are less relevant, which can be easily supervised by the category consistency information available in the GT semantic segmentation map. Under such supervision, the recalibrated features are more consistent for pixels of the same category and more discriminative for pixels of other categories, regardless of their proximity. To complement the detailed information lacking in the global long-range correlation, we introduce an auxiliary adaptive receptive field feature extraction (ARFE) module, parallel to the long-range correlation module in the encoder, to capture finely detailed feature representations for multisize objects in multiscale remote sensing images. In addition, we apply multiscale side-output supervision and a hybrid loss function as local and global constraints to further boost the segmentation accuracy. Experiments were conducted on three public remote sensing datasets (the ISPRS Vaihingen dataset, the ISPRS Potsdam dataset, and the DeepGlobe dataset). Compared with the advanced segmentation methods from the computer vision, medicine, and remote sensing communities, the proposed SLCNet method achieved state-of-the-art performance on all the datasets. The code will be made available at gpcv.whu.edu.cn/data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
量子星尘发布了新的文献求助10
10秒前
科研通AI6应助sfwer采纳,获得30
17秒前
只为更出色完成签到,获得积分10
19秒前
欣喜的人龙完成签到 ,获得积分10
21秒前
23秒前
25秒前
海洋球完成签到,获得积分10
32秒前
kevin完成签到 ,获得积分10
33秒前
34秒前
图南完成签到 ,获得积分10
36秒前
Edou完成签到 ,获得积分10
40秒前
leeSongha完成签到 ,获得积分10
43秒前
熬夜写论文完成签到,获得积分20
44秒前
Astoria完成签到,获得积分10
49秒前
科研通AI6应助Suda采纳,获得10
50秒前
LL完成签到,获得积分10
50秒前
科研通AI6应助江江采纳,获得10
56秒前
小王完成签到 ,获得积分10
59秒前
哈比人linling完成签到,获得积分10
1分钟前
1分钟前
乐观的洋葱完成签到,获得积分10
1分钟前
1分钟前
zzcres完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
lw发布了新的文献求助10
1分钟前
1分钟前
个性半山完成签到 ,获得积分10
1分钟前
piglet完成签到 ,获得积分10
1分钟前
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得30
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
深情安青应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
热心树叶应助lw采纳,获得30
1分钟前
1分钟前
乐乐应助wcc采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509353
求助须知:如何正确求助?哪些是违规求助? 4604314
关于积分的说明 14489571
捐赠科研通 4539026
什么是DOI,文献DOI怎么找? 2487276
邀请新用户注册赠送积分活动 1469709
关于科研通互助平台的介绍 1441934