Integrated triangular fuzzy KE-GRA-TOPSIS method for dynamic ranking of products of customers’ fuzzy Kansei preferences

感性 托普西斯 理想溶液 灰色关联分析 模糊逻辑 排名(信息检索) 计算机科学 偏爱 秩(图论) 相似性(几何) 顾客满意度 人工智能 数据挖掘 数学 运筹学 营销 统计 业务 物理 图像(数学) 组合数学 热力学
作者
Dashuai Liu,Jie Zhang,Chenlu Wang,Weilin Ci,Baoxia Wu,Huafeng Quan
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:46 (1): 19-40 被引量:5
标识
DOI:10.3233/jifs-234549
摘要

As society evolves, companies produce more homogeneous products, shifting customers’ needs from functionality to emotions. Therefore, how quickly customers select products that meet their Kansei preferences has become a key concern. However, customer Kansei preferences vary from person to person and are ambiguous and uncertain, posing a challenge. To address this problem, this paper proposes a TF-KE-GRA-TOPSIS method that integrates triangular fuzzy Kansei engineering (TF-KE) with Grey Relational Analysis (GRA) and Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS). Firstly, a Kansei evaluation system is constructed based on KE and fuzzy theory. A dynamic triangular fuzzy Kansei preference similarity decision matrix (TF-KPSDM) is defined to quantify customer satisfaction with fuzzy Kansei preferences. Secondly, dynamic objective weights are derived using Criteria Importance Though Intercrieria Correlation (CRITIC) and entropy, optimized through game theory to achieve superior combined weights. Thirdly, the GRA-TOPSIS method utilizes the TF-KPSDM and combined weights to rank products. Finally, taking the case of Kansei preference selection for electric bicycles, results indicate that the proposed method robustly avoids rank reversal and achieves greater accuracy than comparative models. This study can help companies dynamically recommend products to customers based on their Kansei preferences, increasing customer satisfaction and sales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Panda完成签到 ,获得积分10
2秒前
第五元素完成签到,获得积分10
2秒前
qiqi1111发布了新的文献求助10
3秒前
3秒前
小仙女212完成签到,获得积分10
3秒前
tianzhanggong发布了新的文献求助30
3秒前
4秒前
Tree完成签到 ,获得积分10
4秒前
小仙女212发布了新的文献求助10
7秒前
7秒前
yy应助曹梦梦采纳,获得10
8秒前
8秒前
8秒前
白隐完成签到,获得积分10
9秒前
非而者厚应助Bruce采纳,获得30
10秒前
yyy关闭了yyy文献求助
10秒前
545完成签到,获得积分10
10秒前
11秒前
Stella完成签到,获得积分20
11秒前
小蘑菇应助每天都好困采纳,获得10
12秒前
vivianzhang发布了新的文献求助10
12秒前
z7777777完成签到,获得积分10
13秒前
545发布了新的文献求助10
13秒前
小纪完成签到 ,获得积分10
14秒前
大神水瓶座完成签到,获得积分10
15秒前
15秒前
17秒前
zhongu应助小仙女212采纳,获得10
17秒前
wangyr11完成签到,获得积分10
18秒前
科研通AI5应助Yile采纳,获得10
19秒前
脑洞疼应助莫离采纳,获得10
21秒前
21秒前
CHdengziqi完成签到,获得积分10
21秒前
在水一方应助cc采纳,获得10
21秒前
22秒前
周日不上发条应助婉婉采纳,获得10
23秒前
蝈蝈发布了新的文献求助30
23秒前
lili发布了新的文献求助10
24秒前
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741086
求助须知:如何正确求助?哪些是违规求助? 3283852
关于积分的说明 10037232
捐赠科研通 3000684
什么是DOI,文献DOI怎么找? 1646647
邀请新用户注册赠送积分活动 783858
科研通“疑难数据库(出版商)”最低求助积分说明 750442