亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detection model transfer of apple soluble solids content based on NIR spectroscopy and deep learning

近红外光谱 自编码 人工神经网络 均方误差 相关系数 计算机科学 人工智能 深度学习 光学(聚焦) 学习迁移 生物系统 模式识别(心理学) 数学 机器学习 统计 光学 物理 生物
作者
Zhiming Guo,Yiyin Zhang,Junyi Wang,Yuanyuan Liu,Heera Jayan,Hesham R. El‐Seedi,Stella M. Alzamora,Paula L. Gómez,Xiaobo Zou
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:212: 108127-108127 被引量:82
标识
DOI:10.1016/j.compag.2023.108127
摘要

Transfer and updating of near infrared (NIR) spectroscopy model of fruit internal quality has become the focus of the industrial application. Internet of Things (IoT) and deep learning (DL) were proposed to perform soluble solids content (SSC) model transfer of apple by NIR. A model transfer platform including low-power handheld internal quality terminal and interacting cloud data system had been constructed. An autoencoder (AE) neural network model was developed for the spectral correction and model transfer. The average time for transmitting detection results to the detection terminal was 1.5 to 2.0 s, with a 100% effective transmission rate. After 5000 iterations of training, the correlation coefficient of different detection terminals improved by 55%, and the root mean square error was reduced by 94%. Selected samples from the second batch of apples detected by the No. 1 detection terminal were added to the original neural network for training. After adding 30 samples, the correlation coefficient increased by 13% and the root mean square error decreased by 90%. The results demonstrated that the AE neural network for spectral correction was effective in eliminating differences between devices and significantly reducing the impact of different detection terminals on the accuracy of NIR detection of SSC in apples. Therefore, the NIR detection model transfer technique could be practically exploited for fruit quality control assessment using different detection terminals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
鹿芗泽发布了新的文献求助10
4秒前
敬业乐群完成签到,获得积分10
4秒前
mumu完成签到,获得积分10
6秒前
月关完成签到 ,获得积分10
11秒前
晚街听风完成签到 ,获得积分10
20秒前
繁星背后完成签到 ,获得积分10
22秒前
23秒前
柠檬树发布了新的文献求助10
26秒前
无花果应助刘言采纳,获得10
33秒前
坚强觅珍完成签到 ,获得积分10
42秒前
48秒前
Lan完成签到 ,获得积分10
49秒前
欣慰小蕊完成签到,获得积分10
49秒前
CHORHIN发布了新的文献求助10
49秒前
Alpha完成签到 ,获得积分10
50秒前
52秒前
刘言发布了新的文献求助10
52秒前
宝贝完成签到 ,获得积分10
53秒前
54秒前
58秒前
zzy发布了新的文献求助10
58秒前
ll发布了新的文献求助10
59秒前
1分钟前
1分钟前
CodeCraft应助madoudou采纳,获得10
1分钟前
刘言完成签到,获得积分20
1分钟前
1分钟前
守一完成签到,获得积分10
1分钟前
Nick_YFWS完成签到,获得积分10
1分钟前
无花果应助榴莲柿子茶采纳,获得10
1分钟前
CHORHIN完成签到,获得积分10
1分钟前
1分钟前
1分钟前
烟花应助TT采纳,获得10
1分钟前
大龙完成签到 ,获得积分10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
Leonard应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
李爱国应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458817
求助须知:如何正确求助?哪些是违规求助? 4564825
关于积分的说明 14296985
捐赠科研通 4489857
什么是DOI,文献DOI怎么找? 2459372
邀请新用户注册赠送积分活动 1449054
关于科研通互助平台的介绍 1424535