Fundus Image Enhancement via Semi-Supervised GAN and Anatomical Structure Preservation

计算机科学 人工智能 眼底(子宫) 计算机视觉 图像质量 糖尿病性视网膜病变 分割 生成对抗网络 模式识别(心理学) 深度学习 图像(数学) 医学 眼科 糖尿病 内分泌学
作者
Hao‐Tian Wu,Xin Cao,Ying Gao,Kaihan Zheng,Jiwu Huang,Jiankun Hu,Zhihong Tian
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (1): 313-326 被引量:5
标识
DOI:10.1109/tetci.2023.3301337
摘要

The fundus image is often used in clinical diagnosis due to ease and safety of acquisition, but the quality may be affected by environment and onsite operations. As low-quality medical images may lead to misinterpretation in diagnosis and analysis, it is important to improve quality of the improperly-acquired fundus images. Unfortunately, the existing fundus image enhancement methods require task-specific prior knowledge or suffer from insufficient generalization ability. To cope with this issue, a generative adversarial network (GAN) based model is proposed, namely the semi-supervised GAN with anatomical structure preservation (SSGAN-ASP). Specifically, an anatomical structure extraction component is employed in the generator to guide the enhancement process by preserving both retinal and lesion structures, while color information in the fundus image is also preserved. The SSGAN-ASP model is evaluated and compared with the state-of-the-art methods for medical image enhancement on three popular datasets. In addition, it is applied in the pre-processing of retinal vessel segmentation and diabetic retinopathy grading tasks to show efficacy in computer-aided diagnosis. Experimental results demonstrate that visual quality of the enhanced image can be improved while better performance in clinical diagnosis is achieved with our proposed model by adopting the anatomical structure extraction component and preserving color information as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
真实的俊驰完成签到,获得积分10
刚刚
平淡的蜻蜓完成签到,获得积分10
1秒前
1秒前
Vii应助宋宋宋2采纳,获得10
2秒前
胡天萌发布了新的文献求助10
3秒前
Grinder完成签到 ,获得积分10
4秒前
MADKAI发布了新的文献求助20
4秒前
圆滑的铁勺完成签到,获得积分10
5秒前
5秒前
5秒前
zhangting完成签到,获得积分10
6秒前
AAAAAAAAAAA完成签到,获得积分10
6秒前
vvvvvvv完成签到,获得积分10
6秒前
6秒前
wanyanjin应助1111采纳,获得10
6秒前
gaos发布了新的文献求助10
7秒前
小吴完成签到,获得积分10
8秒前
迟大猫应助Star1983采纳,获得10
8秒前
chinning完成签到,获得积分10
9秒前
Mon_zh发布了新的文献求助20
9秒前
9秒前
漂亮送终完成签到,获得积分10
9秒前
朴素篮球发布了新的文献求助10
10秒前
天才完成签到 ,获得积分10
10秒前
不喝可乐发布了新的文献求助10
10秒前
11秒前
皮尤尤发布了新的文献求助10
11秒前
12秒前
道中道完成签到,获得积分10
13秒前
13秒前
知之然完成签到,获得积分10
13秒前
研友_n2QP2L完成签到,获得积分10
13秒前
Lucas应助安静听白采纳,获得10
13秒前
CC发布了新的文献求助10
13秒前
星辰大海应助系统提示采纳,获得10
14秒前
14秒前
sss完成签到,获得积分10
14秒前
14秒前
板凳完成签到,获得积分10
15秒前
单纯访枫发布了新的文献求助30
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678