Fundus Image Enhancement via Semi-Supervised GAN and Anatomical Structure Preservation

计算机科学 人工智能 眼底(子宫) 计算机视觉 图像质量 糖尿病性视网膜病变 分割 生成对抗网络 模式识别(心理学) 深度学习 图像(数学) 医学 眼科 内分泌学 糖尿病
作者
Hao‐Tian Wu,Xin Cao,Ying Gao,Kaihan Zheng,Jiwu Huang,Jiankun Hu,Zhihong Tian
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (1): 313-326 被引量:5
标识
DOI:10.1109/tetci.2023.3301337
摘要

The fundus image is often used in clinical diagnosis due to ease and safety of acquisition, but the quality may be affected by environment and onsite operations. As low-quality medical images may lead to misinterpretation in diagnosis and analysis, it is important to improve quality of the improperly-acquired fundus images. Unfortunately, the existing fundus image enhancement methods require task-specific prior knowledge or suffer from insufficient generalization ability. To cope with this issue, a generative adversarial network (GAN) based model is proposed, namely the semi-supervised GAN with anatomical structure preservation (SSGAN-ASP). Specifically, an anatomical structure extraction component is employed in the generator to guide the enhancement process by preserving both retinal and lesion structures, while color information in the fundus image is also preserved. The SSGAN-ASP model is evaluated and compared with the state-of-the-art methods for medical image enhancement on three popular datasets. In addition, it is applied in the pre-processing of retinal vessel segmentation and diabetic retinopathy grading tasks to show efficacy in computer-aided diagnosis. Experimental results demonstrate that visual quality of the enhanced image can be improved while better performance in clinical diagnosis is achieved with our proposed model by adopting the anatomical structure extraction component and preserving color information as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
穆尘发布了新的文献求助10
1秒前
嘻嘻发布了新的文献求助10
2秒前
afsdfds发布了新的文献求助10
2秒前
Owen应助俭朴的大有采纳,获得10
2秒前
3秒前
心心完成签到,获得积分10
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
5秒前
开元完成签到,获得积分10
6秒前
7秒前
8秒前
明亮沛蓝发布了新的文献求助10
8秒前
甜滋滋发布了新的文献求助10
8秒前
8秒前
8秒前
吴怡彤发布了新的文献求助30
9秒前
今后应助123456采纳,获得10
9秒前
10秒前
11秒前
11秒前
11秒前
马大翔完成签到,获得积分0
12秒前
发仔完成签到,获得积分10
13秒前
MoriZhang发布了新的文献求助10
13秒前
共享精神应助xf采纳,获得10
14秒前
kikiaini完成签到,获得积分0
15秒前
15秒前
挽风发布了新的文献求助10
16秒前
17秒前
abiu发布了新的文献求助10
18秒前
19秒前
柯一一应助科研通管家采纳,获得10
19秒前
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
英俊的铭应助科研通管家采纳,获得20
20秒前
JamesPei应助科研通管家采纳,获得30
20秒前
易安应助科研通管家采纳,获得10
20秒前
英姑应助科研通管家采纳,获得10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959633
求助须知:如何正确求助?哪些是违规求助? 3505879
关于积分的说明 11126688
捐赠科研通 3237840
什么是DOI,文献DOI怎么找? 1789380
邀请新用户注册赠送积分活动 871691
科研通“疑难数据库(出版商)”最低求助积分说明 802963