Fundus Image Enhancement via Semi-Supervised GAN and Anatomical Structure Preservation

计算机科学 人工智能 眼底(子宫) 计算机视觉 图像质量 糖尿病性视网膜病变 分割 生成对抗网络 模式识别(心理学) 深度学习 图像(数学) 医学 眼科 内分泌学 糖尿病
作者
Hao‐Tian Wu,Xin Cao,Ying Gao,Kaihan Zheng,Jiwu Huang,Jiankun Hu,Zhihong Tian
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (1): 313-326 被引量:9
标识
DOI:10.1109/tetci.2023.3301337
摘要

The fundus image is often used in clinical diagnosis due to ease and safety of acquisition, but the quality may be affected by environment and onsite operations. As low-quality medical images may lead to misinterpretation in diagnosis and analysis, it is important to improve quality of the improperly-acquired fundus images. Unfortunately, the existing fundus image enhancement methods require task-specific prior knowledge or suffer from insufficient generalization ability. To cope with this issue, a generative adversarial network (GAN) based model is proposed, namely the semi-supervised GAN with anatomical structure preservation (SSGAN-ASP). Specifically, an anatomical structure extraction component is employed in the generator to guide the enhancement process by preserving both retinal and lesion structures, while color information in the fundus image is also preserved. The SSGAN-ASP model is evaluated and compared with the state-of-the-art methods for medical image enhancement on three popular datasets. In addition, it is applied in the pre-processing of retinal vessel segmentation and diabetic retinopathy grading tasks to show efficacy in computer-aided diagnosis. Experimental results demonstrate that visual quality of the enhanced image can be improved while better performance in clinical diagnosis is achieved with our proposed model by adopting the anatomical structure extraction component and preserving color information as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sinrey应助杨乃彬采纳,获得10
2秒前
都美秋发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
Akim应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
情怀应助科研通管家采纳,获得30
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
专注的问寒应助科研通管家采纳,获得100
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
6秒前
Unicorn发布了新的文献求助10
6秒前
8秒前
9秒前
无极微光应助张兰兰采纳,获得20
9秒前
量子星尘发布了新的文献求助10
9秒前
12秒前
酷波er应助ciciyu采纳,获得10
13秒前
英吉利25发布了新的文献求助10
13秒前
13秒前
13秒前
杨榆藤完成签到,获得积分10
14秒前
轨迹应助烟雾里采纳,获得20
14秒前
pct完成签到,获得积分10
14秒前
14秒前
知性的夏之完成签到 ,获得积分10
15秒前
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749338
求助须知:如何正确求助?哪些是违规求助? 5457686
关于积分的说明 15363252
捐赠科研通 4888801
什么是DOI,文献DOI怎么找? 2628695
邀请新用户注册赠送积分活动 1576974
关于科研通互助平台的介绍 1533712