Depression Recognition From EEG Signals Using an Adaptive Channel Fusion Method via Improved Focal Loss

脑电图 计算机科学 频道(广播) 人工智能 模式识别(心理学) 传感器融合 心理学 神经科学 电信
作者
Jian Shen,Yanan Zhang,Huajian Liang,Zeguang Zhao,Kexin Zhu,Kun Qian,Qunxi Dong,Xiaowei Zhang,Bin Hu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (7): 3234-3245 被引量:12
标识
DOI:10.1109/jbhi.2023.3265805
摘要

Depression is a serious and common psychiatric disease characterized by emotional and cognitive dysfunction. In addition, the rates of clinical diagnosis and treatment for depression are low. Therefore, the accurate recognition of depression is important for its effective treatment. Electroencephalogram (EEG) signals, which can objectively reflect the inner states of human brains, are regarded as promising physiological tools that can enable effective and efficient clinical depression diagnosis and recognition. However, one of the challenges regarding EEG-based depression recognition involves sufficiently optimizing the spatial information derived from the multichannel space of EEG signals. Consequently, we propose an adaptive channel fusion method via improved focal loss (FL) functions for depression recognition based on EEG signals to effectively address this challenge. In this method, we propose two improved FL functions that can enhance the separability of hard examples by upweighting their losses as optimization objectives and can optimize the channel weights by a proposed adaptive channel fusion framework. The experimental results obtained on two EEG datasets show that the developed channel fusion method can achieve improved classification performance. The learned channel weights include the individual characteristics of each EEG epoch, which can effectively optimize the spatial information of each EEG epoch via the channel fusion method. In addition, the proposed method performs better than the state-of-the-art channel fusion methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tiny_face完成签到,获得积分10
刚刚
1秒前
1秒前
xiaokuli发布了新的文献求助10
3秒前
4秒前
5秒前
Hello应助20250212采纳,获得10
5秒前
66688发布了新的文献求助10
6秒前
善学以致用应助xx采纳,获得10
7秒前
王德俊发布了新的文献求助10
7秒前
Hosea完成签到,获得积分10
7秒前
10秒前
赘婿应助姜彦乔采纳,获得10
11秒前
11秒前
龚明洋1完成签到,获得积分10
11秒前
12秒前
12秒前
RR发布了新的文献求助10
12秒前
13秒前
14秒前
Ava应助pearsir采纳,获得10
15秒前
123完成签到,获得积分20
15秒前
庾念真发布了新的文献求助40
15秒前
wang发布了新的文献求助10
16秒前
XiaoY发布了新的文献求助10
16秒前
滴滴哒哒完成签到 ,获得积分10
16秒前
岁月轮回发布了新的文献求助10
17秒前
长情诗蕾发布了新的文献求助10
17秒前
Yang发布了新的文献求助10
18秒前
123发布了新的文献求助10
18秒前
ding应助激昂的飞松采纳,获得10
19秒前
ZN发布了新的文献求助10
19秒前
21秒前
22秒前
23秒前
完美世界应助wang采纳,获得10
23秒前
xbf完成签到,获得积分10
24秒前
Kcc发布了新的文献求助30
24秒前
陆上行舟完成签到,获得积分10
24秒前
田様应助科研通管家采纳,获得10
25秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416011
求助须知:如何正确求助?哪些是违规求助? 3017735
关于积分的说明 8882350
捐赠科研通 2705345
什么是DOI,文献DOI怎么找? 1483501
科研通“疑难数据库(出版商)”最低求助积分说明 685735
邀请新用户注册赠送积分活动 680742