共晶
芹菜素
化学
水合物
溶解
溶解度
组合化学
氢键
纳米技术
有机化学
材料科学
分子
类黄酮
抗氧化剂
作者
Jay Makadia,Colin C. Seaton,Mingzhong Li
标识
DOI:10.1021/acs.cgd.3c00030
摘要
Apigenin (4′,5,7-trihydroxyflavone, APG) has many potential therapeutic benefits; however, its poor aqueous solubility has limited its clinical applications. In this work, a large scale cocrystal screening has been conducted, aiming to discover potential APG cocrystals for enhancement of its solubility and dissolution rate. In order to reduce the number of the experimental screening tests, three computational prescreening tools, i.e., molecular complementarity (MC), hydrogen bond propensity (HBP), and hydrogen bond energy (HBE), were used to provide an initial selection of 47 coformer candidates, leading to the discovery of seven APG cocrystals. Among them, six APG cocrystal structures have been determined by successful growth of single crystals, i.e., apigenin–carbamazepine hydrate 1:1:1 cocrystal, apigenin–1,2-di(pyridin-4-yl)ethane hydrate 1:1:1 cocrystal, apigenin–valerolactam 1:2 cocrystal, apigenin-(dl) proline 1:2 cocrystal, apigenin-(d) proline/(l) proline 1:1 cocrystal. All of the APG cocrystals showed improved dissolution performances with the potential to be formulated into drug products.
科研通智能强力驱动
Strongly Powered by AbleSci AI