PSO-Stacking improved ensemble model for campus building energy consumption forecasting based on priority feature selection

粒子群优化 特征选择 计算机科学 堆积 特征(语言学) 集成学习 集合预报 调度(生产过程) 能源消耗 人工智能 数据挖掘 数学优化 机器学习 算法 工程类 数学 语言学 哲学 物理 核磁共振 电气工程
作者
Yisheng Cao,Gang Liu,Jian Sun,Durga Prasad Bavirisetti,Gang Xiao
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:72: 106589-106589 被引量:3
标识
DOI:10.1016/j.jobe.2023.106589
摘要

Building energy consumption forecasting plays an indispensable role in energy resource management and scheduling. When using an ensemble forecasting model, it is difficult to determine the optimal combination of parameters for integrating the algorithm. Aiming at this problem, a Particle Swarm Optimization-Stacking Improved Ensemble (PStIE) model is proposed for improving the Stacking ensemble model. Composed of 11 Machine Learning (ML) algorithms in the regressor pool, the Particle Swarm Optimization (PSO) algorithm is used to find the optimal combination of base models and a meta-model in Stacking. Meanwhile, a Priority Feature Selection (PFS) method is proposed. Different from the previous single feature selection algorithm, PFS integrates the feature ranking of three feature selection algorithms, calculates the priority coefficient of the features, and selects features with the smallest priority coefficients as candidate feature sets. In addition, when the number of training features of a traditional Stacking model reaches “saturation”, adding more features does not much improve the accuracy of forecasting, even if the training time is increased. Due to the above problems, the PFS method is used to perform feature fusion in the second layer of the PSO-Stacking framework. To evaluate the proposed framework, experiments are conducted using the dataset of hourly electricity consumption of a campus building located in Cambridge, Massachusetts, USA. The experimental results show that the RMSE value of the PSO-Stacking framework is 1.71 lower than that of the commonly used ML algorithms. As a part of the ablation study, when setting different numbers for the feature selection, the PFS method can always choose the best or second-best feature combination. After the features selected by the PFS method are used for subsequent feature fusion, the RMSE score of the PStIE model is 2.62 lower than that without feature fusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
以筱发布了新的文献求助10
2秒前
bhkwxdxy完成签到,获得积分10
3秒前
悦耳虔纹完成签到 ,获得积分10
3秒前
xx完成签到,获得积分10
3秒前
大气灵枫完成签到,获得积分10
3秒前
妮妮完成签到,获得积分10
4秒前
6秒前
Struggle完成签到 ,获得积分10
7秒前
7秒前
秦兴虎完成签到,获得积分10
8秒前
Drew11完成签到,获得积分10
8秒前
风趣青槐完成签到,获得积分10
10秒前
科隆龙完成签到,获得积分10
11秒前
11秒前
饱满一手完成签到 ,获得积分10
11秒前
99完成签到,获得积分10
13秒前
枕星发布了新的文献求助10
13秒前
drlq2022完成签到,获得积分10
14秒前
王山完成签到,获得积分10
15秒前
自觉寒梦完成签到,获得积分10
16秒前
ding应助缥缈一刀采纳,获得10
16秒前
pakiorder发布了新的文献求助10
16秒前
专心搞学术完成签到,获得积分10
16秒前
bkagyin应助zzcherished采纳,获得10
18秒前
你怎么这么可爱啊完成签到,获得积分10
18秒前
19秒前
研友_Lmg1gZ完成签到,获得积分10
19秒前
Crazyer完成签到,获得积分10
19秒前
Shuey完成签到,获得积分10
20秒前
XXXXH完成签到,获得积分10
20秒前
Z可完成签到 ,获得积分10
21秒前
momo123完成签到 ,获得积分10
21秒前
高兴的书竹完成签到 ,获得积分10
22秒前
mp5完成签到,获得积分10
23秒前
薯条一克完成签到 ,获得积分10
23秒前
zzcherished完成签到,获得积分10
24秒前
阿军完成签到,获得积分10
24秒前
糊涂的皮皮虾完成签到 ,获得积分10
25秒前
big ben完成签到 ,获得积分10
25秒前
可以的完成签到,获得积分10
26秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038303
求助须知:如何正确求助?哪些是违规求助? 3576013
关于积分的说明 11374210
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029