PSO-Stacking improved ensemble model for campus building energy consumption forecasting based on priority feature selection

粒子群优化 特征选择 计算机科学 堆积 特征(语言学) 集成学习 集合预报 调度(生产过程) 能源消耗 人工智能 数据挖掘 数学优化 机器学习 算法 工程类 数学 语言学 哲学 物理 核磁共振 电气工程
作者
Yisheng Cao,Gang Liu,Jian Sun,Durga Prasad Bavirisetti,Gang Xiao
出处
期刊:Journal of building engineering [Elsevier]
卷期号:72: 106589-106589 被引量:3
标识
DOI:10.1016/j.jobe.2023.106589
摘要

Building energy consumption forecasting plays an indispensable role in energy resource management and scheduling. When using an ensemble forecasting model, it is difficult to determine the optimal combination of parameters for integrating the algorithm. Aiming at this problem, a Particle Swarm Optimization-Stacking Improved Ensemble (PStIE) model is proposed for improving the Stacking ensemble model. Composed of 11 Machine Learning (ML) algorithms in the regressor pool, the Particle Swarm Optimization (PSO) algorithm is used to find the optimal combination of base models and a meta-model in Stacking. Meanwhile, a Priority Feature Selection (PFS) method is proposed. Different from the previous single feature selection algorithm, PFS integrates the feature ranking of three feature selection algorithms, calculates the priority coefficient of the features, and selects features with the smallest priority coefficients as candidate feature sets. In addition, when the number of training features of a traditional Stacking model reaches “saturation”, adding more features does not much improve the accuracy of forecasting, even if the training time is increased. Due to the above problems, the PFS method is used to perform feature fusion in the second layer of the PSO-Stacking framework. To evaluate the proposed framework, experiments are conducted using the dataset of hourly electricity consumption of a campus building located in Cambridge, Massachusetts, USA. The experimental results show that the RMSE value of the PSO-Stacking framework is 1.71 lower than that of the commonly used ML algorithms. As a part of the ablation study, when setting different numbers for the feature selection, the PFS method can always choose the best or second-best feature combination. After the features selected by the PFS method are used for subsequent feature fusion, the RMSE score of the PStIE model is 2.62 lower than that without feature fusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
调研昵称发布了新的文献求助10
刚刚
刚刚
刚刚
十万大山兵大大给十万大山兵大大的求助进行了留言
刚刚
刚刚
CodeCraft应助Mumu采纳,获得10
1秒前
飘逸数据线完成签到,获得积分10
1秒前
111发布了新的文献求助10
1秒前
Gauss完成签到,获得积分0
1秒前
丘奇完成签到,获得积分10
1秒前
木子发布了新的文献求助10
1秒前
标致的方盒完成签到,获得积分10
1秒前
2秒前
致橡树完成签到,获得积分20
2秒前
Yolo发布了新的文献求助10
2秒前
yyy完成签到,获得积分20
3秒前
3秒前
3秒前
yoon发布了新的文献求助10
3秒前
脑洞疼应助香蕉静芙采纳,获得10
3秒前
JTB完成签到,获得积分10
3秒前
4秒前
慕涔发布了新的文献求助10
4秒前
王磊完成签到,获得积分10
4秒前
梧桐的灯完成签到 ,获得积分10
4秒前
传奇3应助轩辕德地采纳,获得10
4秒前
Arnold完成签到,获得积分20
4秒前
倪妮发布了新的文献求助10
5秒前
Island完成签到,获得积分10
5秒前
LiZheng完成签到,获得积分10
5秒前
深情安青应助致橡树采纳,获得10
6秒前
Leeon完成签到,获得积分10
6秒前
李来仪完成签到,获得积分10
6秒前
打打应助unicornmed采纳,获得10
6秒前
Eddy发布了新的文献求助10
7秒前
体贴远山完成签到,获得积分10
8秒前
顾矜应助贤惠的正豪采纳,获得10
8秒前
8秒前
9秒前
无限的隶发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762