PSO-Stacking improved ensemble model for campus building energy consumption forecasting based on priority feature selection

粒子群优化 特征选择 计算机科学 堆积 特征(语言学) 集成学习 集合预报 调度(生产过程) 能源消耗 人工智能 数据挖掘 数学优化 机器学习 算法 工程类 数学 语言学 哲学 物理 核磁共振 电气工程
作者
Yisheng Cao,Gang Liu,Jian Sun,Durga Prasad Bavirisetti,Gang Xiao
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:72: 106589-106589 被引量:3
标识
DOI:10.1016/j.jobe.2023.106589
摘要

Building energy consumption forecasting plays an indispensable role in energy resource management and scheduling. When using an ensemble forecasting model, it is difficult to determine the optimal combination of parameters for integrating the algorithm. Aiming at this problem, a Particle Swarm Optimization-Stacking Improved Ensemble (PStIE) model is proposed for improving the Stacking ensemble model. Composed of 11 Machine Learning (ML) algorithms in the regressor pool, the Particle Swarm Optimization (PSO) algorithm is used to find the optimal combination of base models and a meta-model in Stacking. Meanwhile, a Priority Feature Selection (PFS) method is proposed. Different from the previous single feature selection algorithm, PFS integrates the feature ranking of three feature selection algorithms, calculates the priority coefficient of the features, and selects features with the smallest priority coefficients as candidate feature sets. In addition, when the number of training features of a traditional Stacking model reaches “saturation”, adding more features does not much improve the accuracy of forecasting, even if the training time is increased. Due to the above problems, the PFS method is used to perform feature fusion in the second layer of the PSO-Stacking framework. To evaluate the proposed framework, experiments are conducted using the dataset of hourly electricity consumption of a campus building located in Cambridge, Massachusetts, USA. The experimental results show that the RMSE value of the PSO-Stacking framework is 1.71 lower than that of the commonly used ML algorithms. As a part of the ablation study, when setting different numbers for the feature selection, the PFS method can always choose the best or second-best feature combination. After the features selected by the PFS method are used for subsequent feature fusion, the RMSE score of the PStIE model is 2.62 lower than that without feature fusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文飞雪发布了新的文献求助10
1秒前
庞鲂应助xiaoGuo采纳,获得30
1秒前
小王完成签到 ,获得积分10
1秒前
Trueman发布了新的文献求助10
2秒前
3秒前
3秒前
Blessing完成签到 ,获得积分10
4秒前
感性的若云完成签到,获得积分10
5秒前
WPP发布了新的文献求助10
5秒前
难过千易发布了新的文献求助10
6秒前
Singularity应助177ycd采纳,获得10
6秒前
Lucas应助lllllllll采纳,获得10
6秒前
文盲完成签到,获得积分10
6秒前
7秒前
NIUBEN发布了新的文献求助10
7秒前
8秒前
田様应助情殇采纳,获得10
8秒前
小吕完成签到,获得积分10
9秒前
Lee发布了新的文献求助10
9秒前
9秒前
闾丘博超完成签到,获得积分10
10秒前
jeff发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
12秒前
12秒前
hui完成签到,获得积分20
12秒前
12秒前
13秒前
上官若男应助xiaoshuai采纳,获得10
13秒前
万能图书馆应助LiuLiu采纳,获得10
13秒前
eden发布了新的文献求助10
13秒前
14秒前
DD应助中中中采纳,获得10
14秒前
14秒前
15秒前
丁昆完成签到,获得积分20
15秒前
闾丘博超发布了新的文献求助10
16秒前
16秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974779
求助须知:如何正确求助?哪些是违规求助? 3519193
关于积分的说明 11197417
捐赠科研通 3255311
什么是DOI,文献DOI怎么找? 1797760
邀请新用户注册赠送积分活动 877150
科研通“疑难数据库(出版商)”最低求助积分说明 806187