Deep learning methods for medical image fusion: A review

深度学习 人工智能 计算机科学 图像融合 卷积神经网络 领域(数学) 图像处理 特征提取 机器学习 模式识别(心理学) 图像(数学) 数学 纯数学
作者
Tao Zhou,Qianru Cheng,Huiling Lu,Qi Li,Xiangxiang Zhang,Shi Qiu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:160: 106959-106959 被引量:75
标识
DOI:10.1016/j.compbiomed.2023.106959
摘要

The image fusion methods based on deep learning has become a research hotspot in the field of computer vision in recent years. This paper reviews these methods from five aspects: Firstly, the principle and advantages of image fusion methods based on deep learning are expounded; Secondly, the image fusion methods are summarized in two aspects: End-to-End and Non-End-to-End, according to the different tasks of deep learning in the feature processing stage, the non-end-to-end image fusion methods are divided into two categories: deep learning for decision mapping and deep learning for feature extraction. According to the different types of the networks, the end-to-end image fusion methods are divided into three categories: image fusion methods based on Convolutional Neural Network, Generative Adversarial Network, and Encoder-Decoder Network; Thirdly, the application of the image fusion methods based on deep learning in medical image field is summarized from two aspects: method and data set; Fourthly, evaluation metrics commonly used in the field of medical image fusion are sorted out from 14 aspects; Fifthly, the main challenges faced by the medical image fusion are discussed from two aspects: data sets and fusion methods. And the future development direction is prospected. This paper systematically summarizes the image fusion methods based on the deep learning, which has a positive guiding significance for the in-depth study of multi modal medical images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
kk应助pishuang采纳,获得50
2秒前
Orange应助卷毛羊在忙采纳,获得10
2秒前
2秒前
八月发布了新的文献求助20
2秒前
细心的平蝶完成签到,获得积分10
3秒前
nannan发布了新的文献求助10
3秒前
又发了一篇一区文章完成签到,获得积分10
4秒前
震震发布了新的文献求助10
4秒前
123完成签到,获得积分10
4秒前
4秒前
5秒前
倒霉的芒果完成签到 ,获得积分10
6秒前
春风十里完成签到,获得积分10
6秒前
wangyamei完成签到,获得积分10
6秒前
麒仔完成签到,获得积分10
7秒前
FashionBoy应助dachen97采纳,获得10
7秒前
lucky完成签到,获得积分10
7秒前
香蕉觅云应助zwd采纳,获得10
7秒前
8秒前
tcheng发布了新的文献求助10
8秒前
8秒前
Sci完成签到,获得积分10
8秒前
8秒前
123123完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
麒仔发布了新的文献求助40
11秒前
shengdong发布了新的文献求助10
11秒前
葛藟萦藤完成签到,获得积分10
11秒前
脑洞疼应助Jingting采纳,获得50
12秒前
13秒前
ZHANG完成签到,获得积分10
13秒前
须尽欢发布了新的文献求助10
13秒前
13秒前
阿苏完成签到 ,获得积分10
14秒前
炳灿完成签到 ,获得积分10
14秒前
画画的baby发布了新的文献求助10
14秒前
呼呼呼发布了新的文献求助30
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4947452
求助须知:如何正确求助?哪些是违规求助? 4211229
关于积分的说明 13093565
捐赠科研通 3992434
什么是DOI,文献DOI怎么找? 2185471
邀请新用户注册赠送积分活动 1200855
关于科研通互助平台的介绍 1114351