作者
Tyler Pitre,Dena Zeraatkar,George V Kachkovski,Gareth Leung,Erica Shligold,Sebastian Dowhanik,Federico Angriman,Bruno L. Ferreyro,Damon C. Scales,Bram Rochwerg
摘要
Background Several recently published randomized controlled trials have evaluated various noninvasive oxygenation strategies for the treatment of acute hypoxemic respiratory failure. Research Question Which available noninvasive oxygen strategies are effective for acute hypoxic respiratory failure? Study Design and Methods A systematic review of Medline, Embase, Cochrane CENTRAL, CINAHL, Web of Science, MedRxiv, and Research Square was conducted from inception to October 1, 2022. A random effects frequentist network meta-analysis was performed, and the results are presented using absolute risk difference per 1,000 patients. The Grading of Recommendations, Assessment, Development and Evaluation framework was used to rate the certainty of the evidence. Mortality, invasive mechanical ventilation, duration of hospitalization and ICU stay, ventilator-free days, and level of comfort are reported. Results Thirty-six trials (7,046 patients) were included. It was found that helmet CPAP probably reduces mortality compared with standard oxygen therapy (SOT) (231 fewer deaths per 1,000; 95% CI, 126-273 fewer) (moderate certainty). A high-flow nasal cannula (HFNC) probably reduces the need for invasive mechanical ventilation (103.5 fewer events per 1,000; 95% CI, 40.5-157.5 fewer) (moderate certainty). All noninvasive oxygenation strategies may reduce the duration of hospitalization as compared with SOT (low certainty). Helmet bilevel ventilation (4.84 days fewer; 95% CI, 2.33-7.36 days fewer) and helmet CPAP (1.74 days fewer; 95% CI, 4.49 fewer-1.01 more) may reduce the duration of ICU stay as compared with SOT (both low certainty). SOT may be more comfortable than face mask noninvasive ventilation and no different in comfort compared with an HFNC (both low certainty). Interpretation A helmet interface for noninvasive ventilation probably reduces mortality and the risk of mechanical ventilation, as well as the duration of hospital and ICU stay. An HFNC probably reduces the risk of invasive mechanical ventilation and may be as comfortable as SOT. Further research is necessary to understand the role of these interfaces in acute hypoxemic respiratory failure. Several recently published randomized controlled trials have evaluated various noninvasive oxygenation strategies for the treatment of acute hypoxemic respiratory failure. Which available noninvasive oxygen strategies are effective for acute hypoxic respiratory failure? A systematic review of Medline, Embase, Cochrane CENTRAL, CINAHL, Web of Science, MedRxiv, and Research Square was conducted from inception to October 1, 2022. A random effects frequentist network meta-analysis was performed, and the results are presented using absolute risk difference per 1,000 patients. The Grading of Recommendations, Assessment, Development and Evaluation framework was used to rate the certainty of the evidence. Mortality, invasive mechanical ventilation, duration of hospitalization and ICU stay, ventilator-free days, and level of comfort are reported. Thirty-six trials (7,046 patients) were included. It was found that helmet CPAP probably reduces mortality compared with standard oxygen therapy (SOT) (231 fewer deaths per 1,000; 95% CI, 126-273 fewer) (moderate certainty). A high-flow nasal cannula (HFNC) probably reduces the need for invasive mechanical ventilation (103.5 fewer events per 1,000; 95% CI, 40.5-157.5 fewer) (moderate certainty). All noninvasive oxygenation strategies may reduce the duration of hospitalization as compared with SOT (low certainty). Helmet bilevel ventilation (4.84 days fewer; 95% CI, 2.33-7.36 days fewer) and helmet CPAP (1.74 days fewer; 95% CI, 4.49 fewer-1.01 more) may reduce the duration of ICU stay as compared with SOT (both low certainty). SOT may be more comfortable than face mask noninvasive ventilation and no different in comfort compared with an HFNC (both low certainty). A helmet interface for noninvasive ventilation probably reduces mortality and the risk of mechanical ventilation, as well as the duration of hospital and ICU stay. An HFNC probably reduces the risk of invasive mechanical ventilation and may be as comfortable as SOT. Further research is necessary to understand the role of these interfaces in acute hypoxemic respiratory failure. Lung-Protective Concept and Noninvasive Respiratory SupportCHESTVol. 164Issue 4PreviewNoninvasive respiratory support (NIRS), which includes high-flow nasal cannula (HFNC) and noninvasive ventilation (NIV), has been used for initial respiratory treatment in patients with respiratory failure. However, conclusive evidence is insufficient for the use of NIRS in patients with de novo acute hypoxic respiratory failure (AHRF), which is characterized by significant hypoxemia in the absence of prior chronic respiratory disease.1 Previous network meta-analyses included studies in which more than one-half of the eligible patients had de novo AHRF. Full-Text PDF