Knowledge-Guided Convolutional Neural Network Model for Similar Three-Dimensional Wear Debris Identification With Small Number of Samples

判别式 人工智能 模式识别(心理学) 加权 粒子(生态学) 计算机科学 特征提取 特征(语言学) 断层(地质) 核(代数) 鉴定(生物学) 人工神经网络 卷积神经网络 分类 数据挖掘 数学 地质学 算法 物理 语言学 海洋学 哲学 植物 组合数学 地震学 声学 生物
作者
Shuo Wang,Tao Shao,Tingting Wu,Thompson Sarkodie-Gyan,Yaguo Lei
出处
期刊:Journal of tribology [ASM International]
卷期号:145 (9) 被引量:1
标识
DOI:10.1115/1.4062370
摘要

Abstract Wear debris analysis (WDA) enables the provision of essential information towards the monitoring of machine fault diagnosis and the analysis of wear mechanism. However, this experience-based technology has not yet been automated for the identification of similar particle types due to the small number of samples and highly dispersed features. To address this problem, a knowledge-guided convolutional neural network model is developed to focus on two representative severe wear particles: fatigue and severe sliding particles that have highly similar contours but weakly discriminative surfaces. The height images of particle surfaces are adopted as the initial objective. Characterized by typical particle features, the empirical WDA knowledge is represented into the feature-marked images, and further automatically learned by a U-Net-based knowledge extraction network. By weighting with the U-Net output, a knowledge-guided particle classification network is constructed to identify similar particles under a small number of samples. With this methodology, the empirical WDA knowledge is transferred to guide the classification network for locating the discriminative features in particle height images. Thirty sets of fatigue and severe sliding particles are acquired from wear tests as the training and testing samples. For verification, the network kernel is visualized to trace the particle feature propagation in the classification. Experimental results reveal that the proposed method can accurately identify fault particles that are acquired from wear tests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
T拐拐发布了新的文献求助10
刚刚
13223456完成签到,获得积分10
2秒前
星辰大海应助正科采纳,获得10
2秒前
2秒前
4秒前
4秒前
13223456发布了新的文献求助10
5秒前
852应助无奈梦岚采纳,获得10
7秒前
狗宅完成签到,获得积分10
7秒前
8秒前
crazy发布了新的文献求助10
9秒前
11秒前
奇点临近完成签到 ,获得积分10
12秒前
烦恼都走开完成签到,获得积分10
12秒前
12秒前
我是老大应助jdjd采纳,获得10
13秒前
无情凡英完成签到 ,获得积分10
13秒前
JamesPei应助crazy采纳,获得10
14秒前
ding应助奇异果采纳,获得10
15秒前
感性的含灵关注了科研通微信公众号
15秒前
11完成签到,获得积分10
15秒前
完美世界应助科研狗采纳,获得10
18秒前
善学以致用应助钟鸿盛Domi采纳,获得10
18秒前
19秒前
Jinyang完成签到 ,获得积分10
22秒前
roshan发布了新的文献求助10
24秒前
Amanda发布了新的文献求助10
24秒前
天天喝咖啡完成签到,获得积分10
25秒前
25秒前
27秒前
28秒前
木子李应助窗外风雨阑珊采纳,获得10
28秒前
29秒前
微7完成签到,获得积分20
30秒前
weixiaosi发布了新的文献求助10
31秒前
32秒前
打工人不酷完成签到 ,获得积分10
32秒前
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991903
求助须知:如何正确求助?哪些是违规求助? 3533023
关于积分的说明 11260405
捐赠科研通 3272329
什么是DOI,文献DOI怎么找? 1805693
邀请新用户注册赠送积分活动 882626
科研通“疑难数据库(出版商)”最低求助积分说明 809425