Knowledge-Guided Convolutional Neural Network Model for Similar Three-Dimensional Wear Debris Identification With Small Number of Samples

判别式 人工智能 模式识别(心理学) 加权 粒子(生态学) 计算机科学 特征提取 特征(语言学) 断层(地质) 核(代数) 鉴定(生物学) 人工神经网络 卷积神经网络 分类 数据挖掘 数学 地质学 算法 物理 语言学 海洋学 哲学 植物 组合数学 地震学 声学 生物
作者
Shuo Wang,Tao Shao,Tingting Wu,Thompson Sarkodie-Gyan,Yaguo Lei
出处
期刊:Journal of tribology [ASME International]
卷期号:145 (9) 被引量:1
标识
DOI:10.1115/1.4062370
摘要

Abstract Wear debris analysis (WDA) enables the provision of essential information towards the monitoring of machine fault diagnosis and the analysis of wear mechanism. However, this experience-based technology has not yet been automated for the identification of similar particle types due to the small number of samples and highly dispersed features. To address this problem, a knowledge-guided convolutional neural network model is developed to focus on two representative severe wear particles: fatigue and severe sliding particles that have highly similar contours but weakly discriminative surfaces. The height images of particle surfaces are adopted as the initial objective. Characterized by typical particle features, the empirical WDA knowledge is represented into the feature-marked images, and further automatically learned by a U-Net-based knowledge extraction network. By weighting with the U-Net output, a knowledge-guided particle classification network is constructed to identify similar particles under a small number of samples. With this methodology, the empirical WDA knowledge is transferred to guide the classification network for locating the discriminative features in particle height images. Thirty sets of fatigue and severe sliding particles are acquired from wear tests as the training and testing samples. For verification, the network kernel is visualized to trace the particle feature propagation in the classification. Experimental results reveal that the proposed method can accurately identify fault particles that are acquired from wear tests.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
kitiker发布了新的文献求助10
1秒前
清秀书兰完成签到 ,获得积分10
1秒前
陆lu发布了新的文献求助20
2秒前
标致的文博完成签到 ,获得积分10
2秒前
3秒前
3秒前
4秒前
5秒前
6秒前
加油呀发布了新的文献求助30
7秒前
7秒前
科研通AI6应助王然采纳,获得10
8秒前
sdniuidifod完成签到,获得积分10
9秒前
cui发布了新的文献求助10
9秒前
风格化橙发布了新的文献求助10
9秒前
10秒前
www111完成签到,获得积分20
10秒前
myelin完成签到,获得积分10
10秒前
chengyida完成签到,获得积分10
11秒前
标致凝莲完成签到 ,获得积分10
12秒前
腼腆的南晴完成签到 ,获得积分10
12秒前
www111发布了新的文献求助10
12秒前
12秒前
田様应助LXJY采纳,获得10
13秒前
端庄的火龙果完成签到 ,获得积分10
13秒前
cui完成签到,获得积分10
14秒前
明研完成签到,获得积分10
14秒前
贪玩的秋柔应助简单不言采纳,获得10
15秒前
彭于晏应助awaibi采纳,获得10
15秒前
王小美发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
Elena完成签到 ,获得积分10
18秒前
18秒前
19秒前
隐形曼青应助kitiker采纳,获得10
19秒前
19秒前
思源应助霸气映之采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641780
求助须知:如何正确求助?哪些是违规求助? 4757199
关于积分的说明 15014597
捐赠科研通 4800184
什么是DOI,文献DOI怎么找? 2565890
邀请新用户注册赠送积分活动 1524058
关于科研通互助平台的介绍 1483707