Knowledge-Guided Convolutional Neural Network Model for Similar Three-Dimensional Wear Debris Identification With Small Number of Samples

判别式 人工智能 模式识别(心理学) 加权 粒子(生态学) 计算机科学 特征提取 特征(语言学) 断层(地质) 核(代数) 鉴定(生物学) 人工神经网络 卷积神经网络 分类 数据挖掘 数学 地质学 算法 物理 组合数学 哲学 海洋学 生物 地震学 植物 语言学 声学
作者
Shuo Wang,Tao Shao,Tingting Wu,Thompson Sarkodie-Gyan,Yaguo Lei
出处
期刊:Journal of tribology [ASME International]
卷期号:145 (9) 被引量:1
标识
DOI:10.1115/1.4062370
摘要

Abstract Wear debris analysis (WDA) enables the provision of essential information towards the monitoring of machine fault diagnosis and the analysis of wear mechanism. However, this experience-based technology has not yet been automated for the identification of similar particle types due to the small number of samples and highly dispersed features. To address this problem, a knowledge-guided convolutional neural network model is developed to focus on two representative severe wear particles: fatigue and severe sliding particles that have highly similar contours but weakly discriminative surfaces. The height images of particle surfaces are adopted as the initial objective. Characterized by typical particle features, the empirical WDA knowledge is represented into the feature-marked images, and further automatically learned by a U-Net-based knowledge extraction network. By weighting with the U-Net output, a knowledge-guided particle classification network is constructed to identify similar particles under a small number of samples. With this methodology, the empirical WDA knowledge is transferred to guide the classification network for locating the discriminative features in particle height images. Thirty sets of fatigue and severe sliding particles are acquired from wear tests as the training and testing samples. For verification, the network kernel is visualized to trace the particle feature propagation in the classification. Experimental results reveal that the proposed method can accurately identify fault particles that are acquired from wear tests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助科研通管家采纳,获得30
刚刚
刚刚
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
端庄秋柳完成签到,获得积分10
2秒前
小马甲应助干净的一手采纳,获得10
3秒前
liusaiya发布了新的文献求助10
3秒前
莫荆发布了新的文献求助10
4秒前
4秒前
ss25应助Yuhong采纳,获得20
4秒前
cj发布了新的文献求助10
5秒前
端庄秋柳发布了新的文献求助30
5秒前
有丶神完成签到,获得积分10
5秒前
CipherSage应助晏晏采纳,获得10
7秒前
one发布了新的文献求助10
7秒前
Owen应助Jack123采纳,获得20
9秒前
糊涂的小刺猬完成签到,获得积分20
9秒前
大林发布了新的文献求助10
9秒前
FashionBoy应助粒粒采纳,获得10
10秒前
guoguo完成签到,获得积分20
11秒前
完美世界应助1234采纳,获得10
11秒前
12秒前
小马甲应助liusaiya采纳,获得10
12秒前
123456777完成签到 ,获得积分10
12秒前
科目三应助深蓝采纳,获得10
15秒前
16秒前
16秒前
读博没头脑完成签到,获得积分10
17秒前
19秒前
CipherSage应助猫猫睡觉觉采纳,获得10
21秒前
21秒前
在水一方应助jiao采纳,获得10
22秒前
23秒前
小蘑菇应助健壮豌豆采纳,获得10
23秒前
欣喜成仁发布了新的文献求助10
23秒前
zhbbbb发布了新的文献求助10
24秒前
酷炫的阑悦完成签到,获得积分10
25秒前
25秒前
likestring发布了新的文献求助10
25秒前
26秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
中国氢能技术发展路线图研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170102
求助须知:如何正确求助?哪些是违规求助? 2821407
关于积分的说明 7933784
捐赠科研通 2481608
什么是DOI,文献DOI怎么找? 1321916
科研通“疑难数据库(出版商)”最低求助积分说明 633434
版权声明 602579