Segment based power-efficient scheduling for real-time DAG tasks on edge devices

计算机科学 调度(生产过程) 计算 分布式计算 功率消耗 边缘设备 移动设备 边缘计算 实时计算 作业车间调度 GSM演进的增强数据速率 嵌入式系统 功率(物理) 云计算 算法 人工智能 数学优化 布线(电子设计自动化) 物理 数学 量子力学 操作系统
作者
Lei Yu,Tianqi Zhong,Peng Bi,Lan Wang,Fei Teng
出处
期刊:Parallel Computing [Elsevier]
卷期号:116: 103022-103022 被引量:2
标识
DOI:10.1016/j.parco.2023.103022
摘要

Smart Mobile Devices (SMDs) are crucial for the edge computing paradigm's real-world sensing. Real-time applications, which are computationally intensive and periodic with strict time constraints, can typically be used to replicate real-world sensing. Such applications call for increased processing speed, memory capacity, and battery life on SMDs, which are typically resource-constrained due to physical size restrictions. As a result, scheduling real-time applications for SMDs that are power efficient is crucial for the regular operation of edge computing platforms, and downstream decision-making tasks like computation offloading require the prediction of power consumption using power-saving approaches like DVFS. The main question is how to swiftly develop a better solution to the NP-Hard power efficient scheduling problem with DVFS. Thus, by segmenting the aligned tasks on an SMD, we present a segment-based analysis approach. Additionally, we offer a segment-based scheduling algorithm (SEDF) that draws inspiration from the segment-based analysis approach to achieve power-efficient scheduling for these real-time workloads. This segment-based approach yields a power consumption bound (PB), and a computation offloading use case is developed to demonstrate the application of PB in the subsequent decision-making processes. Both simulations and actual device tests are used to confirm the PB, SEDF, and the effectiveness of offloading decision-making. We demonstrate empirically that PB can be utilized to make approximative optimal decisions in decision-making problems involving computation offloading. SEDF is a straightforward and effective scheduling approach that can cut the power consumption of a multi-core SMD by roughly 30%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狂野傲南应助嘎嘎顺利采纳,获得10
刚刚
刚刚
Vicente完成签到,获得积分10
3秒前
4秒前
Unlung完成签到,获得积分10
5秒前
缘子你好发布了新的文献求助10
5秒前
小问号发布了新的文献求助10
5秒前
9秒前
研二也是二完成签到,获得积分10
9秒前
李剑鸿完成签到,获得积分10
9秒前
10秒前
niko发布了新的文献求助10
11秒前
Carol发布了新的文献求助10
12秒前
13秒前
14秒前
听见完成签到,获得积分20
14秒前
乐乐应助lh采纳,获得10
14秒前
温柔从凝完成签到,获得积分10
14秒前
feng发布了新的文献求助10
15秒前
15秒前
16秒前
XIA发布了新的文献求助10
17秒前
18秒前
20秒前
20秒前
Lucas应助流星采纳,获得10
20秒前
20秒前
盐酸小檗碱完成签到,获得积分20
21秒前
SHYSHYLONG完成签到,获得积分10
22秒前
霜沐发布了新的文献求助10
23秒前
icedoctor关注了科研通微信公众号
24秒前
24秒前
24秒前
ryl发布了新的文献求助10
24秒前
王路飞发布了新的文献求助10
24秒前
无花果应助缓慢的书蝶采纳,获得30
25秒前
迷路盼易发布了新的文献求助10
25秒前
25秒前
pgg完成签到,获得积分10
27秒前
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455209
求助须知:如何正确求助?哪些是违规求助? 3050548
关于积分的说明 9021471
捐赠科研通 2739114
什么是DOI,文献DOI怎么找? 1502452
科研通“疑难数据库(出版商)”最低求助积分说明 694529
邀请新用户注册赠送积分活动 693302