Rag2Mol: Structure-based drug design based on Retrieval Augmented Generation

计算机科学 药品 情报检索 医学 药理学
作者
Peidong Zhang,Xingang Peng,Rong Han,Ting Chen,Jianzhu Ma
标识
DOI:10.1101/2024.10.20.619266
摘要

Artificial intelligence (AI) has brought tremendous progress to drug discovery, yet identifying hit and lead compounds with optimal physicochemical and pharmacological properties remains a significant challenge. Structure-based drug design (SBDD) has emerged as a promising paradigm, but the inherent data biases and ignorance of synthetic accessibility render SBDD models disconnected from practical drug discovery. In this work, we explore two methodologies, Rag2Mol-G and Rag2Mol-R, both based on retrieval-augmented generation (RAG) to design small molecules to fit a 3D pocket. These two methods involve searching for similar small molecules that are purchasable in the database based on the generated ones, or creating new molecules from those in the database that can fit into a 3D pocket. Experimental results demonstrate that Rag2Mol methods consistently produce drug candidates with superior binding affinities and drug-likeness. We find that Rag2Mol-R provides a broader coverage of the chemical landscapes and more precise targeting capability than advanced virtual screening models. Notably, both workflows identified promising inhibitors for the challenging target PTPN2. Our highly extensible framework can integrate diverse SBDD methods, marking a significant advancement in AI-driven SBDD. The codes are available at: https://github.com/CQ-zhang-2016/Rag2Mol.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老迟到的鬼神完成签到 ,获得积分10
刚刚
刚刚
77完成签到,获得积分10
1秒前
小二郎应助呜呜呜采纳,获得10
1秒前
Hum0ro98发布了新的文献求助10
2秒前
2秒前
2秒前
须尽欢发布了新的文献求助10
2秒前
ku_zhang完成签到,获得积分10
2秒前
WO完成签到,获得积分10
3秒前
orixero应助欣欣欣欣向荣采纳,获得10
3秒前
3秒前
wil35完成签到,获得积分10
4秒前
可逾完成签到,获得积分10
4秒前
无花果应助梦梦采纳,获得10
4秒前
在水一方应助扬嘉諵采纳,获得10
4秒前
传奇3应助XX采纳,获得10
4秒前
whikerl完成签到,获得积分10
5秒前
5秒前
zihan关注了科研通微信公众号
5秒前
5秒前
xh发布了新的文献求助10
5秒前
lululuyuyu发布了新的文献求助10
5秒前
汉堡包应助简单的银耳汤采纳,获得10
6秒前
6秒前
kai完成签到,获得积分10
6秒前
6秒前
CodeCraft应助千叶采纳,获得10
6秒前
风中凡霜完成签到,获得积分10
6秒前
7秒前
WO发布了新的文献求助10
7秒前
噜噜完成签到,获得积分10
8秒前
ACMI发布了新的文献求助20
8秒前
田様应助自信的网络采纳,获得10
9秒前
彭于晏应助77采纳,获得10
9秒前
Hum0ro98完成签到,获得积分10
9秒前
Genius发布了新的文献求助10
9秒前
NexusExplorer应助Chenjl采纳,获得10
9秒前
笑点解析应助htumfg采纳,获得20
10秒前
wanci应助AK采纳,获得10
10秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481607
求助须知:如何正确求助?哪些是违规求助? 3071658
关于积分的说明 9123400
捐赠科研通 2763408
什么是DOI,文献DOI怎么找? 1516476
邀请新用户注册赠送积分活动 701579
科研通“疑难数据库(出版商)”最低求助积分说明 700426