Social media use is predictable from app sequences: Using LSTM and transformer neural networks to model habitual behavior

变压器 社会化媒体 人工神经网络 计算机科学 人工智能 心理学 机器学习 万维网 工程类 电气工程 电压
作者
Heinrich Peters,Joseph B. Bayer,Sandra Matz,Yikun Chi,Sumer S. Vaid,Gabriella M. Harari
出处
期刊:Computers in Human Behavior [Elsevier]
卷期号:161: 108381-108381
标识
DOI:10.1016/j.chb.2024.108381
摘要

The present paper introduces a novel approach to studying social media habits through predictive modeling of sequential smartphone user behaviors. While much of the literature on media and technology habits has relied on self-report questionnaires and simple behavioral frequency measures, we examine an important yet understudied aspect of media and technology habits: their embeddedness in repetitive behavioral sequences. Leveraging Long Short-Term Memory (LSTM) and transformer neural networks, we show that (i) social media use is predictable at the within and between-person level and that (ii) there are robust individual differences in the predictability of social media use. We examine the performance of several modeling approaches, including (i) global models trained on the pooled data from all participants, (ii) idiographic person-specific models, and (iii) global models fine-tuned on person-specific data. Neither person-specific modeling nor fine-tuning on person-specific data substantially outperformed the global models, indicating that the global models were able to represent a variety of idiosyncratic behavioral patterns. Additionally, our analyses reveal that individual differences in the predictability of social media use were not substantially related to differences in the frequency of smartphone use in general or the frequency of social media use, indicating that our approach captures an aspect of habits that is distinct from behavioral frequency. Implications for habit modeling and theoretical development are discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
ping发布了新的文献求助10
3秒前
xx完成签到,获得积分10
3秒前
李李李发布了新的文献求助10
3秒前
zz发布了新的文献求助10
3秒前
3秒前
小蘑菇应助Kiki采纳,获得10
4秒前
燕子发布了新的文献求助10
4秒前
FayFoo发布了新的文献求助10
5秒前
小马甲应助王新新采纳,获得10
5秒前
6秒前
6秒前
7秒前
半田清舟完成签到,获得积分10
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
Dali应助zhang采纳,获得10
9秒前
小王同学发布了新的文献求助10
9秒前
豆子完成签到,获得积分10
10秒前
龚昊发布了新的文献求助10
10秒前
搜集达人应助sherman采纳,获得10
11秒前
11秒前
12秒前
Echo关注了科研通微信公众号
12秒前
13秒前
fan发布了新的文献求助10
13秒前
14秒前
14秒前
畅快的鱼发布了新的文献求助30
14秒前
15秒前
小王同学完成签到,获得积分10
16秒前
CipherSage应助Raye采纳,获得10
16秒前
飞天小女警完成签到 ,获得积分10
17秒前
Orange应助龚昊采纳,获得10
17秒前
17秒前
17秒前
玄枵完成签到,获得积分10
19秒前
汤汤发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577678
求助须知:如何正确求助?哪些是违规求助? 4662703
关于积分的说明 14743115
捐赠科研通 4603383
什么是DOI,文献DOI怎么找? 2526334
邀请新用户注册赠送积分活动 1496100
关于科研通互助平台的介绍 1465546