Social media use is predictable from app sequences: Using LSTM and transformer neural networks to model habitual behavior

变压器 社会化媒体 人工神经网络 计算机科学 人工智能 心理学 机器学习 万维网 工程类 电气工程 电压
作者
Heinrich Peters,Joseph B. Bayer,Sandra Matz,Yikun Chi,Sumer S. Vaid,Gabriella M. Harari
出处
期刊:Computers in Human Behavior [Elsevier]
卷期号:161: 108381-108381
标识
DOI:10.1016/j.chb.2024.108381
摘要

The present paper introduces a novel approach to studying social media habits through predictive modeling of sequential smartphone user behaviors. While much of the literature on media and technology habits has relied on self-report questionnaires and simple behavioral frequency measures, we examine an important yet understudied aspect of media and technology habits: their embeddedness in repetitive behavioral sequences. Leveraging Long Short-Term Memory (LSTM) and transformer neural networks, we show that (i) social media use is predictable at the within and between-person level and that (ii) there are robust individual differences in the predictability of social media use. We examine the performance of several modeling approaches, including (i) global models trained on the pooled data from all participants, (ii) idiographic person-specific models, and (iii) global models fine-tuned on person-specific data. Neither person-specific modeling nor fine-tuning on person-specific data substantially outperformed the global models, indicating that the global models were able to represent a variety of idiosyncratic behavioral patterns. Additionally, our analyses reveal that individual differences in the predictability of social media use were not substantially related to differences in the frequency of smartphone use in general or the frequency of social media use, indicating that our approach captures an aspect of habits that is distinct from behavioral frequency. Implications for habit modeling and theoretical development are discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hao发布了新的文献求助10
刚刚
Hui_2023发布了新的文献求助30
刚刚
1秒前
2秒前
好好想想完成签到,获得积分10
3秒前
秋雅发布了新的文献求助10
4秒前
5秒前
5秒前
Bean完成签到,获得积分10
5秒前
5秒前
专注天思关注了科研通微信公众号
6秒前
今后应助发嗲的怜珊采纳,获得10
6秒前
6秒前
7秒前
橘子发布了新的文献求助10
7秒前
风中画板完成签到,获得积分10
7秒前
WT发布了新的文献求助10
8秒前
极品小亮发布了新的文献求助10
8秒前
9秒前
10秒前
ccciii发布了新的文献求助10
11秒前
南枝瑾发布了新的文献求助10
11秒前
互助遵法尚德应助秋雅采纳,获得10
11秒前
11秒前
12秒前
12秒前
极品小亮完成签到,获得积分10
12秒前
乐乐乐乐乐乐应助王金狗采纳,获得10
13秒前
13秒前
aniu发布了新的文献求助10
13秒前
等待泥猴桃完成签到,获得积分10
14秒前
15秒前
16秒前
kkk发布了新的文献求助10
16秒前
Matt发布了新的文献求助10
16秒前
junkook给junkook的求助进行了留言
16秒前
18秒前
自由尔丝发布了新的文献求助10
19秒前
LINING关注了科研通微信公众号
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156157
求助须知:如何正确求助?哪些是违规求助? 2807647
关于积分的说明 7873898
捐赠科研通 2465881
什么是DOI,文献DOI怎么找? 1312484
科研通“疑难数据库(出版商)”最低求助积分说明 630109
版权声明 601905