A strategy to distinguish similar traditional Chinese medicines by liquid chromatography–mass spectrometry, electronic senses, and gas chromatography–ion mobility spectrometry: Marsdeniae tenacissimae Caulis and Paederiae scandens Caulis as examples

化学 电子鼻 色谱法 电子舌 质谱法 气相色谱-质谱法 离子迁移光谱法 线性判别分析 品味 人工智能 食品科学 计算机科学
作者
Jiawei Wang,Zhidong Pei,Yue‐Hua Chen,Siyu Li,Tian‐Min Wang,Ting‐Guo Kang,Na Li,Ya‐Mei Song,Hui‐Peng Song,Hui Zhang
出处
期刊:Phytochemical Analysis [Wiley]
被引量:6
标识
DOI:10.1002/pca.3425
摘要

Abstract Introduction Marsdeniae tenacissimae Caulis (MTC), a popular traditional Chinese medicine, has been widely used in the treatment of tumor diseases. Paederiae scandens Caulis (PSC), which is similar in appearance to MTC, is a common counterfeit product. It is difficult for traditional methods to effectively distinguish between MTC and PSC. Therefore, there is an urgent need for a rapid and accurate method to identify MTC and PSC. Objectives The aim is to distinguish between MTC and PSC by analyzing the differences in nonvolatile organic compounds (NVOCs), taste, odor, and volatile organic compounds (VOCs). Methods Liquid chromatography–mass spectrometry (LC‐MS) was utilized to analyze the NVOCs of MTC and PSC. Electronic tongue (E‐tongue) and electronic nose (E‐nose) were used to analyze their taste and odor respectively. Gas chromatography–ion mobility spectrometry (GC‐IMS) was applied to analyze VOCs. Finally, multivariate statistical analyses were conducted to further investigate the differences between MTC and PSC, including principal component analysis, orthogonal partial least squares discriminant analysis, discriminant factor analysis, and soft independent modeling of class analysis. Results The results of this study indicate that the integrated strategy of LC‐MS, E‐tongue, E‐nose, GC‐IMS, and multivariate statistical analysis can be effectively applied to distinguish between MTC and PSC. Using LC‐MS, 25 NVOCs were identified in MTC, while 18 NVOCs were identified in PSC. The major compounds in MTC are steroids, while the major compounds in PSC are iridoid glycosides. Similarly, the distinct taste difference between MTC and PSC was precisely revealed by the E‐tongue. Specifically, the pronounced bitterness in PSC was proven to stem from iridoid glycosides, whereas the bitterness evident in MTC was intimately tied to steroids. The E‐nose detected eight odor components in MTC and six in PSC, respectively. The subsequent statistical analysis uncovered notable differences in their odor profiles. GC‐IMS provided a visual representation of the differences in VOCs between MTC and PSC. The results indicated a relatively high relative content of 82 VOCs in MTC, contrasted with 32 VOCs exhibiting a similarly high relative content in PSC. Conclusion In this study, for the first time, the combined use of LC‐MS, E‐tongue, E‐nose, GC‐IMS, and multivariate statistical analysis has proven to be an effective method for distinguishing between MTC and PSC from multiple perspectives. This approach provides a valuable reference for the identification of other visually similar traditional Chinese medicines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
eric888应助科研通管家采纳,获得10
刚刚
SJJ应助科研通管家采纳,获得10
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
聪明凡之应助科研通管家采纳,获得10
刚刚
852应助科研通管家采纳,获得10
刚刚
王w应助科研通管家采纳,获得10
刚刚
香蕉诗蕊应助科研通管家采纳,获得10
刚刚
Orange应助科研通管家采纳,获得30
刚刚
王w应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
eric888应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
SJJ应助科研通管家采纳,获得10
1秒前
1秒前
yang完成签到,获得积分10
2秒前
Agu完成签到,获得积分10
3秒前
求助人员发布了新的文献求助10
4秒前
徐立涛发布了新的文献求助10
6秒前
www发布了新的文献求助10
6秒前
meili完成签到,获得积分10
9秒前
格拉希尔完成签到,获得积分10
9秒前
阔达的马里奥完成签到 ,获得积分10
11秒前
abcd_1067完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
诗梦完成签到,获得积分10
13秒前
姬鲁宁完成签到 ,获得积分10
14秒前
www完成签到,获得积分10
14秒前
14秒前
风趣秋白完成签到,获得积分0
15秒前
16秒前
CN1681681发布了新的文献求助10
18秒前
wangcw完成签到 ,获得积分10
19秒前
汉堡包应助黄兆强采纳,获得10
19秒前
5114发布了新的文献求助10
19秒前
魔幻柜子完成签到 ,获得积分10
20秒前
烧饼拌糖完成签到,获得积分10
21秒前
情怀应助神奇白马儿采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604083
求助须知:如何正确求助?哪些是违规求助? 4688908
关于积分的说明 14856973
捐赠科研通 4696430
什么是DOI,文献DOI怎么找? 2541128
邀请新用户注册赠送积分活动 1507314
关于科研通互助平台的介绍 1471851