Integrated Sensor System for Real-Time Monitoring and Detection of Fish Quality and Spoilage

食物腐败 计算机科学 质量(理念) 实时计算 渔业 生物 哲学 遗传学 认识论 细菌
作者
V A Binson,Sania Thomas
标识
DOI:10.3390/proceedings2024104026
摘要

The increasing demand for high-quality and safe seafood necessitates the development of efficient monitoring systems to ensure the freshness and safety of fish products. In this research, we present an innovative approach utilizing a sensor array consisting of MQ137, MQ135, MQ3, MQ9, TGS 2610, TGS 2620, TGS 2600, and TGS 822 sensors. These sensors, sensitive to various gases associated with fish spoilage, are integrated into a comprehensive system for fish quality monitoring and spoilage detection. The developed system includes an array of chemical gas sensors, a data acquisition system, a processing unit for handling data, and a machine learning model for classification. The chemical gas sensor array enables the real-time detection of the volatile compounds released during the spoilage of fish. The data acquisition system collects and processes information from the sensor array, while the data processing system extracts relevant features for subsequent analysis. A pattern recognition system, employing a robust LDA-XGBoost model, was employed to differentiate between fresh and spoiled fish. The experimental results demonstrate the system's high accuracy in classifying fish quality, achieving an impressive classification accuracy of 96.12%. The integration of various sensors ensures sensitivity to a broad spectrum of chemical compounds associated with fish spoilage, enhancing the system's reliability. The proposed sensor-based approach provides a cost-effective, rapid, and accurate solution for fish quality monitoring, offering potential applications in the seafood industry to ensure the delivery of safe and fresh products to consumers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
桐桐应助limengqi1234采纳,获得10
1秒前
melody发布了新的文献求助10
1秒前
dingdingding完成签到,获得积分10
2秒前
SHUNJIAN关注了科研通微信公众号
2秒前
okkkura发布了新的文献求助10
2秒前
清逸发布了新的文献求助30
3秒前
落寞依珊应助慢慢采纳,获得10
3秒前
sss完成签到 ,获得积分10
3秒前
科目三应助隐形元绿采纳,获得10
4秒前
4秒前
4秒前
4秒前
5秒前
田様应助勤奋的汉堡采纳,获得10
5秒前
5秒前
书篆完成签到 ,获得积分10
5秒前
Alaska完成签到,获得积分10
6秒前
叶楠发布了新的文献求助10
6秒前
传奇3应助魏煜佳采纳,获得10
7秒前
7秒前
OMR123完成签到,获得积分10
8秒前
violet发布了新的文献求助10
8秒前
Coisini发布了新的文献求助80
8秒前
8秒前
小二郎应助最最可爱采纳,获得10
8秒前
vira发布了新的文献求助10
9秒前
fsdgbg发布了新的文献求助10
10秒前
我很懵逼发布了新的文献求助10
10秒前
10秒前
慕青应助PANYIAO采纳,获得10
10秒前
炸毛可乐完成签到,获得积分20
11秒前
Ava应助Iridesent0v0采纳,获得10
12秒前
12秒前
沉默鲜花完成签到,获得积分10
12秒前
12秒前
anti1988发布了新的文献求助10
12秒前
三三得九完成签到 ,获得积分10
13秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3482810
求助须知:如何正确求助?哪些是违规求助? 3072319
关于积分的说明 9126371
捐赠科研通 2764054
什么是DOI,文献DOI怎么找? 1516797
邀请新用户注册赠送积分活动 701797
科研通“疑难数据库(出版商)”最低求助积分说明 700690