乙二醇
选择性
格式化
化学
层状双氢氧化物
材料科学
乙烯
无机化学
化学工程
光化学
催化作用
氢氧化物
有机化学
工程类
作者
Zhen Wang,Junhua Li,Qi Zhang,Chao Wu,Haoyan Meng,Ying Tang,Anqi Zou,Yiming Zhang,Rui Ma,Xiang Lv,Zhi Gen Yu,Shibo Xi,Junmin Xue,Xiaopeng Wang,Jiagang Wu
标识
DOI:10.1002/ange.202411517
摘要
Abstract Ethylene glycol electro‐oxidation reaction (EGOR) on nickel‐based hydroxides (Ni(OH) 2 ) represents a promising strategy for generating value‐added chemicals, i.e. formate and glycolate, and coupling water‐electrolytic hydrogen production. The high product selectivity was one of the most significant area of polyols electro‐oxidation process. Yet, developing Ni(OH) 2 ‐based EGOR electrocatalyst with highly selective product remains a challenge due to the unclear cognition about the EGOR mechanism. Herein, Mn‐doped Ni(OH) 2 catalysts were utilized to investigate the EGOR mechanism. Experimental and calculation results reveal that the electronic states of e g * band play an important role in the catalytic performance and the product selectivity for EGOR. Broadening the e g * band could effectively enhance the adsorption capacity of glyoxal intermediates. On the other hand, this enhanced adsorption could lead to reduced side reactions associated with glycolate formation, simultaneously promoting the cleavage of C−C bonds. Consequently, the selectivity for formate was notably augmented by these enhancements. This work offers new insights into the regulation of catalyst electronic states for improving polyol electrocatalytic activity and product selectivity.
科研通智能强力驱动
Strongly Powered by AbleSci AI