Proteomic signatures improve risk prediction for common and rare diseases

多发性骨髓瘤 疾病 计算生物学 医学 生物信息学 内科学 生物
作者
Julia Carrasco-Zanini,Maik Pietzner,Jonathan Davitte,Praveen Surendran,Damien C. Croteau‐Chonka,Chloe Robins,Ana Torralbo,Christopher Tomlinson,Florian Grünschläger,Natalie Fitzpatrick,C. R. Ytsma,Tokuwa Kanno,Stephan Gade,Daniel F. Freitag,Frederik Ziebell,Simon Haas,Spiros Denaxas,Joanna Betts,Nicholas J. Wareham,Harry Hemingway
出处
期刊:Nature Medicine [Nature Portfolio]
卷期号:30 (9): 2489-2498 被引量:23
标识
DOI:10.1038/s41591-024-03142-z
摘要

For many diseases there are delays in diagnosis due to a lack of objective biomarkers for disease onset. Here, in 41,931 individuals from the United Kingdom Biobank Pharma Proteomics Project, we integrated measurements of ~3,000 plasma proteins with clinical information to derive sparse prediction models for the 10-year incidence of 218 common and rare diseases (81-6,038 cases). We then compared prediction models developed using proteomic data with models developed using either basic clinical information alone or clinical information combined with data from 37 clinical assays. The predictive performance of sparse models including as few as 5 to 20 proteins was superior to the performance of models developed using basic clinical information for 67 pathologically diverse diseases (median delta C-index = 0.07; range = 0.02-0.31). Sparse protein models further outperformed models developed using basic information combined with clinical assay data for 52 diseases, including multiple myeloma, non-Hodgkin lymphoma, motor neuron disease, pulmonary fibrosis and dilated cardiomyopathy. For multiple myeloma, single-cell RNA sequencing from bone marrow in newly diagnosed patients showed that four of the five predictor proteins were expressed specifically in plasma cells, consistent with the strong predictive power of these proteins. External replication of sparse protein models in the EPIC-Norfolk study showed good generalizability for prediction of the six diseases tested. These findings show that sparse plasma protein signatures, including both disease-specific proteins and protein predictors shared across several diseases, offer clinically useful prediction of common and rare diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分10
刚刚
吃饱饱完成签到,获得积分20
1秒前
1秒前
SYLH应助liuyanq采纳,获得10
1秒前
1秒前
SciGPT应助冷静的奇迹采纳,获得10
1秒前
2秒前
李健应助陈亚茹采纳,获得10
2秒前
王欣瑶发布了新的文献求助10
2秒前
光明磊落发布了新的文献求助10
4秒前
5秒前
xuan给xuan的求助进行了留言
5秒前
文小武完成签到,获得积分10
6秒前
DQ发布了新的文献求助10
6秒前
7秒前
hh完成签到,获得积分10
7秒前
8秒前
Hu完成签到,获得积分10
9秒前
研友_VZG7GZ应助yxlao采纳,获得10
9秒前
江姜发布了新的文献求助10
9秒前
10秒前
12秒前
大模型应助vv采纳,获得10
12秒前
zotero发布了新的文献求助10
14秒前
bkagyin应助科研通管家采纳,获得10
15秒前
coolkid应助科研通管家采纳,获得10
15秒前
albertxin发布了新的文献求助10
15秒前
coolkid应助科研通管家采纳,获得10
15秒前
隐形曼青应助科研通管家采纳,获得10
15秒前
15秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
15秒前
深情安青应助科研通管家采纳,获得10
15秒前
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
15秒前
顾矜应助科研通管家采纳,获得10
15秒前
15秒前
鸣笛应助科研通管家采纳,获得30
15秒前
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952701
求助须知:如何正确求助?哪些是违规求助? 3498211
关于积分的说明 11090706
捐赠科研通 3228753
什么是DOI,文献DOI怎么找? 1785094
邀请新用户注册赠送积分活动 869086
科研通“疑难数据库(出版商)”最低求助积分说明 801350