Proteomic signatures improve risk prediction for common and rare diseases

多发性骨髓瘤 疾病 计算生物学 医学 生物信息学 内科学 生物
作者
Julia Carrasco-Zanini,Maik Pietzner,Jonathan Davitte,Praveen Surendran,Damien C. Croteau‐Chonka,Chloe Robins,Ana Torralbo,Christopher Tomlinson,Florian Grünschläger,Natalie Fitzpatrick,C. R. Ytsma,Tokuwa Kanno,Stephan Gade,Daniel F. Freitag,Frederik Ziebell,Simon Haas,Spiros Denaxas,Joanna Betts,Nicholas J. Wareham,Harry Hemingway,Robert A. Scott,Claudia Langenberg
出处
期刊:Nature Medicine [Springer Nature]
被引量:4
标识
DOI:10.1038/s41591-024-03142-z
摘要

Abstract For many diseases there are delays in diagnosis due to a lack of objective biomarkers for disease onset. Here, in 41,931 individuals from the United Kingdom Biobank Pharma Proteomics Project, we integrated measurements of ~3,000 plasma proteins with clinical information to derive sparse prediction models for the 10-year incidence of 218 common and rare diseases (81–6,038 cases). We then compared prediction models developed using proteomic data with models developed using either basic clinical information alone or clinical information combined with data from 37 clinical assays. The predictive performance of sparse models including as few as 5 to 20 proteins was superior to the performance of models developed using basic clinical information for 67 pathologically diverse diseases (median delta C-index = 0.07; range = 0.02–0.31). Sparse protein models further outperformed models developed using basic information combined with clinical assay data for 52 diseases, including multiple myeloma, non-Hodgkin lymphoma, motor neuron disease, pulmonary fibrosis and dilated cardiomyopathy. For multiple myeloma, single-cell RNA sequencing from bone marrow in newly diagnosed patients showed that four of the five predictor proteins were expressed specifically in plasma cells, consistent with the strong predictive power of these proteins. External replication of sparse protein models in the EPIC-Norfolk study showed good generalizability for prediction of the six diseases tested. These findings show that sparse plasma protein signatures, including both disease-specific proteins and protein predictors shared across several diseases, offer clinically useful prediction of common and rare diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
葛二蛋完成签到,获得积分10
1秒前
1秒前
zhouzhou完成签到,获得积分10
2秒前
Akim应助束整形zhang采纳,获得10
3秒前
3秒前
周天成完成签到,获得积分10
4秒前
5秒前
烟花应助科研通管家采纳,获得30
6秒前
6秒前
大个应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
牟白容发布了新的文献求助10
6秒前
科目三应助雪雪子哇采纳,获得10
7秒前
8秒前
梁羽生发布了新的文献求助10
10秒前
Ada爰完成签到,获得积分10
10秒前
10秒前
阿晴发布了新的文献求助10
11秒前
牟白容完成签到,获得积分10
12秒前
13秒前
14秒前
BCS完成签到,获得积分10
15秒前
Aura完成签到,获得积分10
16秒前
领导范儿应助fantasy采纳,获得500
18秒前
20秒前
21秒前
21秒前
张三完成签到,获得积分10
22秒前
chuhong完成签到 ,获得积分10
23秒前
24秒前
Ada爰发布了新的文献求助10
25秒前
duli发布了新的文献求助10
25秒前
25秒前
Chao完成签到,获得积分20
26秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155971
求助须知:如何正确求助?哪些是违规求助? 2807318
关于积分的说明 7872715
捐赠科研通 2465696
什么是DOI,文献DOI怎么找? 1312291
科研通“疑难数据库(出版商)”最低求助积分说明 630049
版权声明 601905