Boosting the Quantum Efficiency of Ionic Carbon Nitrides in Photocatalytic H2O2 Evolution via Controllable n → π* Electronic Transition Activation

材料科学 光催化 量子产额 石墨氮化碳 量子效率 氮化碳 离子键合 氮化物 超快激光光谱学 催化作用 解吸 纳米技术 光化学 吸附 化学工程 光谱学 物理化学 光电子学 化学 离子 有机化学 物理 图层(电子) 工程类 量子力学 荧光
作者
Haijian Tong,Jokotadeola Odutola,Junsheng Song,Peng Lu,Nikolai V. Tkachenko,Markus Antonietti,Christian Mark Pelicano
出处
期刊:Advanced Materials [Wiley]
被引量:21
标识
DOI:10.1002/adma.202412753
摘要

Abstract Hydrogen peroxide (H 2 O 2 ) is a crucial chemical used in numerous industrial applications, yet its manufacturing relies on the energy‐demanding anthraquinone process. Solar‐driven synthesis of H 2 O 2 is gaining traction as a promising research area, providing a sustainable method for its production. Herein, a controllable activation of n → π* electronic transition is presented to boost the photocatalytic H 2 O 2 evolution in ionic carbon nitrides. This enhancement is achieved through the simultaneous introduction of structural distortions and defect sites (─C ≡ N groups and N vacancies) into the KPHI framework. The optimal catalyst ( 2%Ox‐ KPHI) reached an apparent quantum yield of 41% at 410 nm without the need for any cocatalysts, outperforming most previously reported carbon nitride‐based photocatalysts. Extensive experimental characterizations and theoretical calculations confirm that a corrugated configuration and the presence of defects significantly broaden the light absorption profile, improve carrier separation and migration, promote O 2 adsorption, and lower the energy barriers for H 2 O 2 desorption. Transient absorption spectroscopy indicates that the enhanced photocatalytic performance of 2%Ox ‐KPHI is largely attributed to the preferential migration of electrons at defect sites over extended timescales, following the diffusion of geminate carriers across the PHI sheets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xjl发布了新的文献求助10
1秒前
2秒前
2秒前
sadh2完成签到 ,获得积分10
2秒前
2秒前
xuanwu发布了新的文献求助10
4秒前
4秒前
无花果应助摆哥采纳,获得10
4秒前
馒头酶完成签到,获得积分10
5秒前
xue完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
zhaomr完成签到,获得积分10
7秒前
7秒前
watercolding发布了新的文献求助10
7秒前
zsp发布了新的文献求助10
8秒前
金志铭驳回了852应助
8秒前
不倦应助xuanwu采纳,获得10
10秒前
无花果应助xjl采纳,获得10
11秒前
orchid发布了新的文献求助10
11秒前
孝顺的白薇完成签到,获得积分20
11秒前
lily完成签到,获得积分20
12秒前
蓝溺应助ltxinanjiao采纳,获得30
13秒前
大模型应助watercolding采纳,获得10
13秒前
溏心蛋完成签到,获得积分10
13秒前
14秒前
开心的火龙果完成签到,获得积分10
15秒前
15秒前
Sandy完成签到 ,获得积分10
16秒前
彭于晏应助肖遥采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
所所应助科研通管家采纳,获得10
17秒前
Ww应助科研通管家采纳,获得10
17秒前
风吹麦田应助科研通管家采纳,获得30
17秒前
无花果应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
酷波er应助科研通管家采纳,获得10
17秒前
香蕉觅云应助孝顺的白薇采纳,获得10
17秒前
17秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226445
求助须知:如何正确求助?哪些是违规求助? 4397958
关于积分的说明 13687854
捐赠科研通 4262492
什么是DOI,文献DOI怎么找? 2339139
邀请新用户注册赠送积分活动 1336507
关于科研通互助平台的介绍 1292544