亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SwinUNeCCt: bidirectional hash-based agent transformer for cervical cancer MRI image multi-task learning

计算机科学 散列函数 任务(项目管理) 宫颈癌 变压器 人工智能 癌症 医学 内科学 计算机安全 电气工程 电压 工程类 管理 经济
作者
Chongshuang Yang,Zhuoyi Tan,Yijie Wang,Ran Bi,Shi Tian-liang,Yang Jing,Chao Huang,Peng Jiang,Xiangyang Fu
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-75544-5
摘要

Cervical cancer is the fourth most common malignant tumor among women globally, posing a significant threat to women's health. In 2022, approximately 600,000 new cases were reported, and 340,000 deaths occurred due to cervical cancer. Magnetic resonance imaging (MRI) is the preferred imaging method for diagnosing, staging, and evaluating cervical cancer. However, manual segmentation of MRI images is time-consuming and subjective. Therefore, there is an urgent need for automatic segmentation models to identify cervical cancer lesions in MRI scans accurately. All MRIs in our research are from cervical cancer patients diagnosed by pathology at Tongren City People's Hospital. Strict data selection criteria and clearly defined inclusion and exclusion conditions were established to ensure data consistency and accuracy of research results. The dataset contains imaging data from 122 cervical cancer patients, with each patient having 100 pelvic dynamic contrast-enhanced MRI scans. Annotations were jointly completed by medical professionals from Universiti Putra Malaysia and the Radiology Department of Tongren City People's Hospital to ensure data accuracy and reliability. Additionally, a novel computer-aided diagnosis model named SwinUNeCCt is proposed. This model incorporates (i) A bidirectional hash-based agent multi-head self-attention mechanism, which optimizes the interaction between local and global features in MRI, aiding in more accurate lesion identification. (ii) Reduced computational complexity of the self-attention mechanism. The effectiveness of the SwinUNeCCt model has been validated through comparisons with state-of-the-art 3D medical models, including nnUnet, TransBTS, nnFormer, UnetR, UnesT, SwinUNetR, and SwinUNeLCsT. In semantic segmentation tasks without a classification module, the SwinUNeCCt model demonstrates excellent performance across multiple key metrics: achieving a 95HD of 6.25, an IoU of 0.669, and a DSC of 0.802, all of which are the best results among the compared models. Simultaneously, SwinUNeCCt strikes a good balance between computational efficiency and model complexity, requiring only 442.7 GFLOPs of computational power and 71.2 M parameters. Furthermore, in semantic segmentation tasks that include a classification module, the SwinUNeCCt model also exhibits powerful recognition capabilities. Although this slightly increases computational overhead and model complexity, its performance surpasses other comparative models. The SwinUNeCCt model demonstrates excellent performance in semantic segmentation tasks, achieving the best results among state-of-the-art 3D medical models across multiple key metrics. It balances computational efficiency and model complexity well, maintaining high performance even with the inclusion of a classification module.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
虞鱼瑜发布了新的文献求助10
1分钟前
1分钟前
1分钟前
傅夜山发布了新的文献求助10
1分钟前
丫丫完成签到,获得积分10
1分钟前
Echopotter发布了新的文献求助30
2分钟前
Echopotter完成签到,获得积分10
2分钟前
3分钟前
丫丫发布了新的文献求助20
3分钟前
淡淡醉波wuliao完成签到 ,获得积分10
3分钟前
学习使勇哥进步完成签到 ,获得积分10
3分钟前
Owen应助虞鱼瑜采纳,获得10
3分钟前
gszy1975完成签到,获得积分10
3分钟前
傅夜山发布了新的文献求助30
4分钟前
共享精神应助林屿溪采纳,获得10
4分钟前
兴奋道罡完成签到,获得积分10
4分钟前
4分钟前
林屿溪发布了新的文献求助10
5分钟前
王肥肥完成签到,获得积分20
5分钟前
5分钟前
海洋岩土12138完成签到 ,获得积分10
6分钟前
科研通AI2S应助林屿溪采纳,获得10
6分钟前
6分钟前
xiaorui完成签到,获得积分20
7分钟前
luckyalias完成签到 ,获得积分10
8分钟前
魏白晴完成签到,获得积分10
8分钟前
9分钟前
10分钟前
11分钟前
11分钟前
大模型应助蓝_1995采纳,获得10
11分钟前
共享精神应助玥1采纳,获得10
11分钟前
蓝_1995完成签到,获得积分10
11分钟前
11分钟前
Kevin发布了新的文献求助30
11分钟前
11分钟前
玥1发布了新的文献求助10
11分钟前
蓝_1995发布了新的文献求助10
11分钟前
jiajia完成签到,获得积分10
11分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171568
求助须知:如何正确求助?哪些是违规求助? 2822431
关于积分的说明 7939235
捐赠科研通 2483077
什么是DOI,文献DOI怎么找? 1322935
科研通“疑难数据库(出版商)”最低求助积分说明 633809
版权声明 602647