朗之万方程
统计物理学
核(代数)
依赖关系(UML)
马尔可夫过程
消散
放松(心理学)
朗之万动力
国家(计算机科学)
物理
联轴节(管道)
同种类的
计算机科学
应用数学
数学
人工智能
算法
热力学
材料科学
纯数学
心理学
社会心理学
统计
冶金
作者
Pei Ge,Zhongqiang Zhang,Huan Lei
标识
DOI:10.1103/physrevlett.133.077301
摘要
We present a data-driven method to learn stochastic reduced models of complex systems that retain a state-dependent memory beyond the standard generalized Langevin equation with a homogeneous kernel. The constructed model naturally encodes the heterogeneous energy dissipation by jointly learning a set of state features and the non-Markovian coupling among the features. Numerical results demonstrate the limitation of the standard generalized Langevin equation and the essential role of the broadly overlooked state-dependency nature in predicting molecule kinetics related to conformation relaxation and transition.
科研通智能强力驱动
Strongly Powered by AbleSci AI