已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Spiking mode-based neural networks

模式(计算机接口) 尖峰神经网络 计算机科学 人工神经网络 神经科学 人工智能 心理学 人机交互
作者
Zhanghan Lin,Haiping Huang
出处
期刊:Physical review [American Physical Society]
卷期号:110 (2)
标识
DOI:10.1103/physreve.110.024306
摘要

Spiking neural networks play an important role in brainlike neuromorphic computations and in studying working mechanisms of neural circuits. One drawback of training a large-scale spiking neural network is that updating all weights is quite expensive. Furthermore, after training, all information related to the computational task is hidden into the weight matrix, prohibiting us from a transparent understanding of circuit mechanisms. Therefore, in this work, we address these challenges by proposing a spiking mode-based training protocol, where the recurrent weight matrix is explained as a Hopfield-like multiplication of three matrices: input modes, output modes, and a score matrix. The first advantage is that the weight is interpreted by input and output modes and their associated scores characterizing the importance of each decomposition term. The number of modes is thus adjustable, allowing more degrees of freedom for modeling the experimental data. This significantly reduces the training cost because of significantly reduced space complexity for learning. Training spiking networks is thus carried out in the mode-score space. The second advantage is that one can project the high-dimensional neural activity (filtered spike train) in the state space onto the mode space which is typically of a low dimension, e.g., a few modes are sufficient to capture the shape of the underlying neural manifolds. We successfully apply our framework in two computational tasks-digit classification and selective sensory integration tasks. Our method thus accelerates the training of spiking neural networks by a Hopfield-like decomposition, and moreover this training leads to low-dimensional attractor structures of high-dimensional neural dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ccm发布了新的文献求助10
1秒前
3秒前
Jy完成签到,获得积分10
4秒前
虚心碧完成签到,获得积分10
5秒前
NexusExplorer应助Murphy采纳,获得10
6秒前
7秒前
7秒前
dyy完成签到,获得积分10
8秒前
606完成签到,获得积分10
9秒前
噗宝凹发布了新的文献求助10
9秒前
zzz发布了新的文献求助10
10秒前
askdha发布了新的文献求助10
11秒前
ccm发布了新的文献求助10
13秒前
小蘑菇应助WJP采纳,获得10
13秒前
科研小南完成签到 ,获得积分10
14秒前
14秒前
小南完成签到,获得积分10
14秒前
谦让的啤酒完成签到,获得积分10
15秒前
香锅不要辣完成签到 ,获得积分10
15秒前
思源应助噗宝凹采纳,获得10
17秒前
阳光问安完成签到 ,获得积分10
19秒前
无3发布了新的文献求助10
20秒前
归尘应助长孙一手采纳,获得10
21秒前
cbc完成签到,获得积分10
21秒前
kyouu完成签到,获得积分10
22秒前
22秒前
23秒前
王不留行发布了新的文献求助10
24秒前
L1ghtshow完成签到,获得积分10
24秒前
Jiro完成签到,获得积分10
25秒前
汉堡包应助伶俐的剑封采纳,获得10
25秒前
追寻的念波完成签到,获得积分20
26秒前
ccm发布了新的文献求助10
27秒前
李健的小迷弟应助muxiangrong采纳,获得200
27秒前
27秒前
聪明G完成签到 ,获得积分10
29秒前
妖精发布了新的文献求助10
29秒前
31秒前
Orange应助可可豆采纳,获得10
32秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5209140
求助须知:如何正确求助?哪些是违规求助? 4386469
关于积分的说明 13660937
捐赠科研通 4245610
什么是DOI,文献DOI怎么找? 2329382
邀请新用户注册赠送积分活动 1327206
关于科研通互助平台的介绍 1279519