已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Spiking mode-based neural networks

模式(计算机接口) 尖峰神经网络 计算机科学 人工神经网络 神经科学 人工智能 心理学 人机交互
作者
Zhanghan Lin,Haiping Huang
出处
期刊:Physical review [American Physical Society]
卷期号:110 (2)
标识
DOI:10.1103/physreve.110.024306
摘要

Spiking neural networks play an important role in brainlike neuromorphic computations and in studying working mechanisms of neural circuits. One drawback of training a large-scale spiking neural network is that updating all weights is quite expensive. Furthermore, after training, all information related to the computational task is hidden into the weight matrix, prohibiting us from a transparent understanding of circuit mechanisms. Therefore, in this work, we address these challenges by proposing a spiking mode-based training protocol, where the recurrent weight matrix is explained as a Hopfield-like multiplication of three matrices: input modes, output modes, and a score matrix. The first advantage is that the weight is interpreted by input and output modes and their associated scores characterizing the importance of each decomposition term. The number of modes is thus adjustable, allowing more degrees of freedom for modeling the experimental data. This significantly reduces the training cost because of significantly reduced space complexity for learning. Training spiking networks is thus carried out in the mode-score space. The second advantage is that one can project the high-dimensional neural activity (filtered spike train) in the state space onto the mode space which is typically of a low dimension, e.g., a few modes are sufficient to capture the shape of the underlying neural manifolds. We successfully apply our framework in two computational tasks-digit classification and selective sensory integration tasks. Our method thus accelerates the training of spiking neural networks by a Hopfield-like decomposition, and moreover this training leads to low-dimensional attractor structures of high-dimensional neural dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾子墨发布了新的文献求助10
3秒前
菲1208完成签到,获得积分10
3秒前
4秒前
哇呀呀完成签到 ,获得积分10
10秒前
绮烟完成签到 ,获得积分10
13秒前
顾子墨完成签到,获得积分10
15秒前
17秒前
17秒前
18秒前
氟锑酸完成签到 ,获得积分10
18秒前
sora98完成签到 ,获得积分10
19秒前
19秒前
喜悦的小土豆完成签到 ,获得积分10
20秒前
21秒前
浮游应助仙女爱科研采纳,获得10
21秒前
22秒前
mr_wang发布了新的文献求助10
22秒前
炙热初柔发布了新的文献求助10
24秒前
灰灰完成签到 ,获得积分10
26秒前
川川完成签到,获得积分20
26秒前
Niki完成签到 ,获得积分10
27秒前
miyya发布了新的文献求助10
27秒前
贪玩的谷芹完成签到 ,获得积分10
29秒前
30秒前
jynihao完成签到,获得积分10
31秒前
温暖发布了新的文献求助10
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
科研通AI6应助科研通管家采纳,获得10
34秒前
Orange应助科研通管家采纳,获得10
34秒前
完美世界应助科研通管家采纳,获得10
34秒前
大个应助科研通管家采纳,获得10
34秒前
小蘑菇应助科研通管家采纳,获得10
34秒前
GingerF应助科研通管家采纳,获得60
34秒前
上官若男应助科研通管家采纳,获得10
35秒前
35秒前
无花果应助ROC采纳,获得10
37秒前
yuyu完成签到,获得积分20
38秒前
jynihao发布了新的文献求助10
41秒前
鸭鸭完成签到 ,获得积分10
41秒前
qianyixingchen完成签到 ,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356235
求助须知:如何正确求助?哪些是违规求助? 4488073
关于积分的说明 13971611
捐赠科研通 4388906
什么是DOI,文献DOI怎么找? 2411290
邀请新用户注册赠送积分活动 1403833
关于科研通互助平台的介绍 1377655