Spiking mode-based neural networks

模式(计算机接口) 尖峰神经网络 计算机科学 人工神经网络 神经科学 人工智能 心理学 人机交互
作者
Zhanghan Lin,Haiping Huang
出处
期刊:Physical review [American Physical Society]
卷期号:110 (2)
标识
DOI:10.1103/physreve.110.024306
摘要

Spiking neural networks play an important role in brainlike neuromorphic computations and in studying working mechanisms of neural circuits. One drawback of training a large-scale spiking neural network is that updating all weights is quite expensive. Furthermore, after training, all information related to the computational task is hidden into the weight matrix, prohibiting us from a transparent understanding of circuit mechanisms. Therefore, in this work, we address these challenges by proposing a spiking mode-based training protocol, where the recurrent weight matrix is explained as a Hopfield-like multiplication of three matrices: input modes, output modes, and a score matrix. The first advantage is that the weight is interpreted by input and output modes and their associated scores characterizing the importance of each decomposition term. The number of modes is thus adjustable, allowing more degrees of freedom for modeling the experimental data. This significantly reduces the training cost because of significantly reduced space complexity for learning. Training spiking networks is thus carried out in the mode-score space. The second advantage is that one can project the high-dimensional neural activity (filtered spike train) in the state space onto the mode space which is typically of a low dimension, e.g., a few modes are sufficient to capture the shape of the underlying neural manifolds. We successfully apply our framework in two computational tasks-digit classification and selective sensory integration tasks. Our method thus accelerates the training of spiking neural networks by a Hopfield-like decomposition, and moreover this training leads to low-dimensional attractor structures of high-dimensional neural dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助Rui_Rui采纳,获得10
1秒前
华仔应助摆烂包菜采纳,获得10
2秒前
3秒前
4秒前
乔钰涵发布了新的文献求助10
5秒前
李健的粉丝团团长应助bing采纳,获得10
5秒前
5秒前
斯文败类应助月宸采纳,获得10
5秒前
hhh完成签到,获得积分20
7秒前
调皮芫发布了新的文献求助10
9秒前
小小小发布了新的文献求助10
9秒前
顾矜应助王明浩采纳,获得30
10秒前
10秒前
Jasper应助紧张的毛衣采纳,获得10
10秒前
12秒前
12秒前
陆66完成签到 ,获得积分10
13秒前
14秒前
在水一方应助调皮芫采纳,获得10
15秒前
bing发布了新的文献求助10
15秒前
16秒前
17秒前
18秒前
19秒前
19秒前
mwl发布了新的文献求助10
21秒前
dui发布了新的文献求助10
21秒前
zydd完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助150
21秒前
23秒前
23秒前
RR发布了新的文献求助10
24秒前
25秒前
崔懿龍发布了新的文献求助10
25秒前
26秒前
希望天下0贩的0应助小渔采纳,获得10
27秒前
27秒前
牛马发布了新的文献求助10
28秒前
liu66完成签到,获得积分10
28秒前
walk发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
Cowries - A Guide to the Gastropod Family Cypraeidae. Volume 2: Shells and Animals 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950925
求助须知:如何正确求助?哪些是违规求助? 4213683
关于积分的说明 13105422
捐赠科研通 3995528
什么是DOI,文献DOI怎么找? 2186939
邀请新用户注册赠送积分活动 1202197
关于科研通互助平台的介绍 1115421