Spiking mode-based neural networks

模式(计算机接口) 尖峰神经网络 计算机科学 人工神经网络 神经科学 人工智能 心理学 人机交互
作者
Zhanghan Lin,Haiping Huang
出处
期刊:Physical review [American Physical Society]
卷期号:110 (2)
标识
DOI:10.1103/physreve.110.024306
摘要

Spiking neural networks play an important role in brainlike neuromorphic computations and in studying working mechanisms of neural circuits. One drawback of training a large-scale spiking neural network is that updating all weights is quite expensive. Furthermore, after training, all information related to the computational task is hidden into the weight matrix, prohibiting us from a transparent understanding of circuit mechanisms. Therefore, in this work, we address these challenges by proposing a spiking mode-based training protocol, where the recurrent weight matrix is explained as a Hopfield-like multiplication of three matrices: input modes, output modes, and a score matrix. The first advantage is that the weight is interpreted by input and output modes and their associated scores characterizing the importance of each decomposition term. The number of modes is thus adjustable, allowing more degrees of freedom for modeling the experimental data. This significantly reduces the training cost because of significantly reduced space complexity for learning. Training spiking networks is thus carried out in the mode-score space. The second advantage is that one can project the high-dimensional neural activity (filtered spike train) in the state space onto the mode space which is typically of a low dimension, e.g., a few modes are sufficient to capture the shape of the underlying neural manifolds. We successfully apply our framework in two computational tasks-digit classification and selective sensory integration tasks. Our method thus accelerates the training of spiking neural networks by a Hopfield-like decomposition, and moreover this training leads to low-dimensional attractor structures of high-dimensional neural dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
粥游天下完成签到,获得积分10
1秒前
科研通AI6应助优美的雁丝采纳,获得10
2秒前
hhh发布了新的文献求助10
2秒前
3秒前
3秒前
700w完成签到 ,获得积分0
3秒前
小磊子完成签到,获得积分10
4秒前
荆月竹完成签到,获得积分10
5秒前
ljloveljj关注了科研通微信公众号
6秒前
钢笔发布了新的文献求助10
6秒前
sevenseven完成签到,获得积分10
6秒前
Orange应助小刘采纳,获得10
6秒前
传奇3应助luckyhan采纳,获得10
7秒前
笑点低的语蕊完成签到,获得积分20
7秒前
N1发布了新的文献求助10
8秒前
8秒前
Anima应助物理陈老师采纳,获得10
9秒前
科目三应助平淡映易采纳,获得10
9秒前
完美世界应助果粒程采纳,获得10
9秒前
10秒前
霸气的香菇完成签到 ,获得积分10
11秒前
紫色奶萨完成签到,获得积分10
12秒前
12秒前
tree发布了新的文献求助10
13秒前
所所应助任性映秋采纳,获得10
13秒前
woodwood完成签到,获得积分10
13秒前
游标卡尺完成签到,获得积分10
14秒前
欣喜的秋莲完成签到,获得积分10
15秒前
斯文败类应助111舒舒采纳,获得10
15秒前
平淡映易完成签到,获得积分10
16秒前
YYJJHH完成签到,获得积分10
16秒前
DR完成签到,获得积分10
17秒前
游标卡尺发布了新的文献求助10
18秒前
18秒前
胡0515_完成签到,获得积分20
18秒前
18秒前
19秒前
xxfsx应助西行龟采纳,获得20
19秒前
zhizhzihzih发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289641
求助须知:如何正确求助?哪些是违规求助? 4441165
关于积分的说明 13826825
捐赠科研通 4323621
什么是DOI,文献DOI怎么找? 2373243
邀请新用户注册赠送积分活动 1368665
关于科研通互助平台的介绍 1332557