Spiking mode-based neural networks

模式(计算机接口) 尖峰神经网络 计算机科学 人工神经网络 神经科学 人工智能 心理学 人机交互
作者
Zhanghan Lin,Haiping Huang
出处
期刊:Physical review [American Physical Society]
卷期号:110 (2)
标识
DOI:10.1103/physreve.110.024306
摘要

Spiking neural networks play an important role in brainlike neuromorphic computations and in studying working mechanisms of neural circuits. One drawback of training a large-scale spiking neural network is that updating all weights is quite expensive. Furthermore, after training, all information related to the computational task is hidden into the weight matrix, prohibiting us from a transparent understanding of circuit mechanisms. Therefore, in this work, we address these challenges by proposing a spiking mode-based training protocol, where the recurrent weight matrix is explained as a Hopfield-like multiplication of three matrices: input modes, output modes, and a score matrix. The first advantage is that the weight is interpreted by input and output modes and their associated scores characterizing the importance of each decomposition term. The number of modes is thus adjustable, allowing more degrees of freedom for modeling the experimental data. This significantly reduces the training cost because of significantly reduced space complexity for learning. Training spiking networks is thus carried out in the mode-score space. The second advantage is that one can project the high-dimensional neural activity (filtered spike train) in the state space onto the mode space which is typically of a low dimension, e.g., a few modes are sufficient to capture the shape of the underlying neural manifolds. We successfully apply our framework in two computational tasks-digit classification and selective sensory integration tasks. Our method thus accelerates the training of spiking neural networks by a Hopfield-like decomposition, and moreover this training leads to low-dimensional attractor structures of high-dimensional neural dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
joy发布了新的文献求助10
1秒前
张狗蛋发布了新的文献求助10
2秒前
Neyra完成签到,获得积分10
2秒前
jawa完成签到 ,获得积分10
2秒前
joy完成签到,获得积分20
5秒前
研友_ZGR0jn完成签到,获得积分10
5秒前
燃燃发布了新的文献求助10
6秒前
swimming完成签到 ,获得积分10
7秒前
8秒前
蓝色斑马发布了新的文献求助10
10秒前
思源应助痴情的寒云采纳,获得10
12秒前
12秒前
无心的天真完成签到 ,获得积分10
13秒前
桐桐应助萝卜采纳,获得10
13秒前
牛奶煮萝莉完成签到 ,获得积分10
13秒前
淡淡的晓蓝完成签到,获得积分10
13秒前
keen发布了新的文献求助10
13秒前
坦率鬼卞发布了新的文献求助10
14秒前
研友_VZG7GZ应助庸人自扰采纳,获得10
14秒前
zxcvvbnm完成签到 ,获得积分10
14秒前
坦率大米完成签到,获得积分10
15秒前
yangying完成签到,获得积分10
16秒前
默默若枫完成签到,获得积分10
16秒前
18秒前
Lawliet完成签到,获得积分10
19秒前
滑蛋肉片发布了新的文献求助10
19秒前
英俊的铭应助蓝色斑马采纳,获得10
20秒前
稳重的胡萝卜完成签到,获得积分10
20秒前
21秒前
坦率鬼卞完成签到,获得积分10
22秒前
年轻的路人完成签到,获得积分10
23秒前
23秒前
fornas完成签到 ,获得积分10
25秒前
26秒前
凩飒给凩飒的求助进行了留言
27秒前
在水一方应助xd采纳,获得10
27秒前
Chushi完成签到,获得积分10
28秒前
领导范儿应助LLX123采纳,获得10
29秒前
31秒前
Alioth发布了新的文献求助10
31秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962550
求助须知:如何正确求助?哪些是违规求助? 3508565
关于积分的说明 11141672
捐赠科研通 3241287
什么是DOI,文献DOI怎么找? 1791495
邀请新用户注册赠送积分活动 872888
科研通“疑难数据库(出版商)”最低求助积分说明 803474