Spiking mode-based neural networks

模式(计算机接口) 尖峰神经网络 计算机科学 人工神经网络 神经科学 人工智能 心理学 人机交互
作者
Zhanghan Lin,Haiping Huang
出处
期刊:Physical review 卷期号:110 (2)
标识
DOI:10.1103/physreve.110.024306
摘要

Spiking neural networks play an important role in brainlike neuromorphic computations and in studying working mechanisms of neural circuits. One drawback of training a large-scale spiking neural network is that updating all weights is quite expensive. Furthermore, after training, all information related to the computational task is hidden into the weight matrix, prohibiting us from a transparent understanding of circuit mechanisms. Therefore, in this work, we address these challenges by proposing a spiking mode-based training protocol, where the recurrent weight matrix is explained as a Hopfield-like multiplication of three matrices: input modes, output modes, and a score matrix. The first advantage is that the weight is interpreted by input and output modes and their associated scores characterizing the importance of each decomposition term. The number of modes is thus adjustable, allowing more degrees of freedom for modeling the experimental data. This significantly reduces the training cost because of significantly reduced space complexity for learning. Training spiking networks is thus carried out in the mode-score space. The second advantage is that one can project the high-dimensional neural activity (filtered spike train) in the state space onto the mode space which is typically of a low dimension, e.g., a few modes are sufficient to capture the shape of the underlying neural manifolds. We successfully apply our framework in two computational tasks-digit classification and selective sensory integration tasks. Our method thus accelerates the training of spiking neural networks by a Hopfield-like decomposition, and moreover this training leads to low-dimensional attractor structures of high-dimensional neural dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周shang发布了新的文献求助10
刚刚
断棍豪斯完成签到,获得积分10
1秒前
咩12发布了新的文献求助10
2秒前
4秒前
聪慧寄凡完成签到 ,获得积分10
7秒前
大个应助巴拉巴拉采纳,获得10
8秒前
GrBs发布了新的文献求助10
9秒前
9秒前
陈昇发布了新的文献求助10
9秒前
田様应助zhishui采纳,获得10
9秒前
whujiege完成签到,获得积分10
10秒前
vikoel完成签到,获得积分10
10秒前
11秒前
呆萌海雪完成签到,获得积分20
12秒前
柯飞扬完成签到,获得积分10
13秒前
紧张的妖妖完成签到 ,获得积分10
14秒前
孟石三发布了新的文献求助10
15秒前
lydy1993发布了新的文献求助10
15秒前
李健的粉丝团团长应助QYW采纳,获得10
15秒前
焚风完成签到,获得积分10
15秒前
16秒前
秋傲儿发布了新的文献求助10
16秒前
咩12完成签到,获得积分10
18秒前
bkagyin应助shawn采纳,获得10
19秒前
qiiq1997发布了新的文献求助10
19秒前
星辰大海应助高兴的香薇采纳,获得10
19秒前
华仔应助123qwe采纳,获得10
21秒前
Clay发布了新的文献求助30
21秒前
22秒前
咖啡豆应助来了采纳,获得10
22秒前
咖啡豆应助来了采纳,获得10
22秒前
Jing完成签到,获得积分10
23秒前
24秒前
细腻孤兰完成签到,获得积分10
26秒前
文泽发布了新的文献求助10
27秒前
南宫书瑶完成签到,获得积分10
27秒前
Luo完成签到,获得积分10
27秒前
高兴的香薇完成签到,获得积分10
28秒前
28秒前
XFF完成签到,获得积分10
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137412
求助须知:如何正确求助?哪些是违规求助? 2788462
关于积分的说明 7786566
捐赠科研通 2444645
什么是DOI,文献DOI怎么找? 1300002
科研通“疑难数据库(出版商)”最低求助积分说明 625712
版权声明 601023