Spiking mode-based neural networks

模式(计算机接口) 尖峰神经网络 计算机科学 人工神经网络 神经科学 人工智能 心理学 人机交互
作者
Zhanghan Lin,Haiping Huang
出处
期刊:Physical review [American Physical Society]
卷期号:110 (2)
标识
DOI:10.1103/physreve.110.024306
摘要

Spiking neural networks play an important role in brainlike neuromorphic computations and in studying working mechanisms of neural circuits. One drawback of training a large-scale spiking neural network is that updating all weights is quite expensive. Furthermore, after training, all information related to the computational task is hidden into the weight matrix, prohibiting us from a transparent understanding of circuit mechanisms. Therefore, in this work, we address these challenges by proposing a spiking mode-based training protocol, where the recurrent weight matrix is explained as a Hopfield-like multiplication of three matrices: input modes, output modes, and a score matrix. The first advantage is that the weight is interpreted by input and output modes and their associated scores characterizing the importance of each decomposition term. The number of modes is thus adjustable, allowing more degrees of freedom for modeling the experimental data. This significantly reduces the training cost because of significantly reduced space complexity for learning. Training spiking networks is thus carried out in the mode-score space. The second advantage is that one can project the high-dimensional neural activity (filtered spike train) in the state space onto the mode space which is typically of a low dimension, e.g., a few modes are sufficient to capture the shape of the underlying neural manifolds. We successfully apply our framework in two computational tasks-digit classification and selective sensory integration tasks. Our method thus accelerates the training of spiking neural networks by a Hopfield-like decomposition, and moreover this training leads to low-dimensional attractor structures of high-dimensional neural dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小sci完成签到,获得积分10
刚刚
Lazarus发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
1秒前
1秒前
安静发布了新的文献求助10
1秒前
Jiancui发布了新的文献求助10
1秒前
zcx发布了新的文献求助10
2秒前
Zx_1993应助周轩采纳,获得20
2秒前
what发布了新的文献求助10
2秒前
3秒前
3秒前
LL发布了新的文献求助10
3秒前
billevans发布了新的文献求助100
3秒前
飞翔的完成签到,获得积分10
3秒前
April发布了新的文献求助30
3秒前
3秒前
冷酷尔安完成签到,获得积分20
4秒前
4秒前
苏星星发布了新的文献求助10
4秒前
孙尧芳发布了新的文献求助30
5秒前
weikang发布了新的文献求助10
5秒前
Stella应助曾经青亦采纳,获得30
5秒前
7秒前
计划发布了新的文献求助10
8秒前
歪咪发布了新的文献求助10
8秒前
8秒前
刘文辉完成签到,获得积分10
8秒前
闪闪机器猫完成签到,获得积分10
8秒前
上官若男应助Tangyartie采纳,获得10
9秒前
9秒前
文献使者完成签到,获得积分10
9秒前
酷酷的笔记本完成签到,获得积分10
10秒前
10秒前
浮游应助LL采纳,获得10
10秒前
11秒前
Lazarus完成签到,获得积分10
11秒前
11秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338438
求助须知:如何正确求助?哪些是违规求助? 4475552
关于积分的说明 13928668
捐赠科研通 4370833
什么是DOI,文献DOI怎么找? 2401451
邀请新用户注册赠送积分活动 1394568
关于科研通互助平台的介绍 1366401