IDDF2024-ABS-0166 Metabolomics-driven plasma and tissue signatures and machine learning for gastric cancer diagnosis: a retrospective study and mendelian randomization study

孟德尔随机化 代谢组学 癌症 代谢组 生物标志物发现 恶性肿瘤 医学 计算生物学 生物信息学 肿瘤科 内科学 生物 蛋白质组学 生物化学 基因 遗传变异 基因型
作者
Juan Zhu,Xue Li,Yida Huang,Lingbin Du
出处
期刊:Clinical gastroenterology 卷期号:: A302.1-A302
标识
DOI:10.1136/gutjnl-2024-iddf.267
摘要

Background

Gastric cancer (GC) is a highly prevalent and deadly malignancy, necessitating timely diagnosis and intervention. However, current diagnoses predominantly hinge on gastroscopy, limited by invasiveness and low uptake rates. We aimed to develop diagnostic models for GC utilizing non-invasive plasma metabolic biomarkers.

Methods

We conducted a two-phase study involving 647 participants, comprising 277 GC and 370 non-GC. Candidate differential metabolites were identified in the discovery and validation phases using ultra-performance liquid chromatography-mass spectrometry, and a diagnostic model was developed using machine-learning algorithms. Then, mendelian randomization (MR) analysis was used to examine the causal association between metabolic biomarkers and the risk of GC. These metabolic biomarkers were validated in the GC tissue by comparing them with tumor-adjacent non-malignant paired tissue.

Results

Twenty-six replicated plasma metabolites were identified in the discovery and validation dataset. Six features were selected to construct a metabolic panel with excellent diagnostic performance (AUCs of 0.947–0.982 in the discovery dataset and 0.920–0.951 in the validation dataset). The sensitivity of the panel (0.900–0.940) significantly outperformed traditional clinical protein biomarkers (0.020–0.240). The panel also exhibited promise in early GC detection, with AUCs of 0.914–0.961 in the discovery dataset and 0.894–0.940 in the validation dataset. Among the identified metabolites, eight were traced differentially expressed in GC and paired adjacent tissues, and two (2-hydroxy-3-methylvalerate, isovalerylcarnitine(C5)) were causally linked with GC in MR analysis.

Conclusions

This study identifies promising metabolic signatures for GC diagnosis and develops a reliable diagnostic model. The findings underscore the potential of metabolic analysis for accurate screening and early detection of GC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机智一曲完成签到 ,获得积分10
刚刚
刚刚
刚刚
讲座梅郎完成签到,获得积分10
1秒前
贵贵完成签到,获得积分10
1秒前
2秒前
852应助花仙子采纳,获得10
2秒前
迷你的迎南完成签到,获得积分10
2秒前
SYY发布了新的文献求助10
3秒前
panpanpan完成签到,获得积分10
3秒前
4秒前
4秒前
我又可以了完成签到,获得积分10
5秒前
FashionBoy应助LY采纳,获得10
5秒前
5秒前
6秒前
zlsuen完成签到,获得积分20
6秒前
6秒前
务实颜完成签到 ,获得积分10
6秒前
丘比特应助WWD采纳,获得10
6秒前
Star1983发布了新的文献求助10
7秒前
科研公主完成签到,获得积分10
7秒前
7秒前
我是海盗完成签到,获得积分10
7秒前
cheryl完成签到,获得积分10
7秒前
7秒前
平常亦凝完成签到,获得积分20
8秒前
8秒前
8秒前
8秒前
long完成签到,获得积分20
8秒前
唠叨的似狮完成签到,获得积分20
11秒前
11秒前
eddie完成签到,获得积分10
13秒前
13秒前
李爱国应助十六采纳,获得10
13秒前
豆杀包完成签到,获得积分10
13秒前
14秒前
14秒前
hzx完成签到,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582