IDDF2024-ABS-0166 Metabolomics-driven plasma and tissue signatures and machine learning for gastric cancer diagnosis: a retrospective study and mendelian randomization study

孟德尔随机化 代谢组学 癌症 代谢组 生物标志物发现 恶性肿瘤 医学 计算生物学 生物信息学 肿瘤科 内科学 生物 蛋白质组学 生物化学 基因 基因型 遗传变异
作者
Juan Zhu,Xue Li,Yida Huang,Lingbin Du
出处
期刊:Clinical gastroenterology 卷期号:: A302.1-A302
标识
DOI:10.1136/gutjnl-2024-iddf.267
摘要

Background

Gastric cancer (GC) is a highly prevalent and deadly malignancy, necessitating timely diagnosis and intervention. However, current diagnoses predominantly hinge on gastroscopy, limited by invasiveness and low uptake rates. We aimed to develop diagnostic models for GC utilizing non-invasive plasma metabolic biomarkers.

Methods

We conducted a two-phase study involving 647 participants, comprising 277 GC and 370 non-GC. Candidate differential metabolites were identified in the discovery and validation phases using ultra-performance liquid chromatography-mass spectrometry, and a diagnostic model was developed using machine-learning algorithms. Then, mendelian randomization (MR) analysis was used to examine the causal association between metabolic biomarkers and the risk of GC. These metabolic biomarkers were validated in the GC tissue by comparing them with tumor-adjacent non-malignant paired tissue.

Results

Twenty-six replicated plasma metabolites were identified in the discovery and validation dataset. Six features were selected to construct a metabolic panel with excellent diagnostic performance (AUCs of 0.947–0.982 in the discovery dataset and 0.920–0.951 in the validation dataset). The sensitivity of the panel (0.900–0.940) significantly outperformed traditional clinical protein biomarkers (0.020–0.240). The panel also exhibited promise in early GC detection, with AUCs of 0.914–0.961 in the discovery dataset and 0.894–0.940 in the validation dataset. Among the identified metabolites, eight were traced differentially expressed in GC and paired adjacent tissues, and two (2-hydroxy-3-methylvalerate, isovalerylcarnitine(C5)) were causally linked with GC in MR analysis.

Conclusions

This study identifies promising metabolic signatures for GC diagnosis and develops a reliable diagnostic model. The findings underscore the potential of metabolic analysis for accurate screening and early detection of GC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
清脆大门完成签到,获得积分10
1秒前
张哈哈完成签到,获得积分20
1秒前
111完成签到,获得积分10
2秒前
整齐的酒窝完成签到,获得积分10
2秒前
2秒前
4秒前
司念者你完成签到 ,获得积分10
4秒前
Joey发布了新的文献求助10
4秒前
可宝想当富婆完成签到,获得积分10
4秒前
Akim应助xwhl采纳,获得10
5秒前
卡图兰发布了新的文献求助10
5秒前
wanci给主旋律的求助进行了留言
5秒前
Qinzhiyuan1990完成签到 ,获得积分10
5秒前
枝杲完成签到,获得积分20
6秒前
小黎发布了新的文献求助10
7秒前
Spirit发布了新的文献求助10
7秒前
ZZZ完成签到,获得积分10
7秒前
许新宇完成签到,获得积分10
7秒前
7秒前
8秒前
www完成签到,获得积分10
9秒前
9秒前
9秒前
章半仙完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
Twonej应助幽默的黑米采纳,获得30
11秒前
chen完成签到,获得积分10
11秒前
11秒前
丘比特应助qiao采纳,获得10
11秒前
henry发布了新的文献求助10
11秒前
热情听南完成签到 ,获得积分10
12秒前
虚幻的香彤完成签到,获得积分10
12秒前
一朵云发布了新的文献求助10
12秒前
12秒前
核动力驴应助清爽的夏天采纳,获得10
12秒前
13秒前
11完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658890
求助须知:如何正确求助?哪些是违规求助? 4824772
关于积分的说明 15083763
捐赠科研通 4817484
什么是DOI,文献DOI怎么找? 2578170
邀请新用户注册赠送积分活动 1532856
关于科研通互助平台的介绍 1491657