IDDF2024-ABS-0166 Metabolomics-driven plasma and tissue signatures and machine learning for gastric cancer diagnosis: a retrospective study and mendelian randomization study

孟德尔随机化 代谢组学 癌症 代谢组 生物标志物发现 恶性肿瘤 医学 计算生物学 生物信息学 肿瘤科 内科学 生物 蛋白质组学 生物化学 基因 遗传变异 基因型
作者
Juan Zhu,Xue Li,Yida Huang,Lingbin Du
标识
DOI:10.1136/gutjnl-2024-iddf.267
摘要

Background

Gastric cancer (GC) is a highly prevalent and deadly malignancy, necessitating timely diagnosis and intervention. However, current diagnoses predominantly hinge on gastroscopy, limited by invasiveness and low uptake rates. We aimed to develop diagnostic models for GC utilizing non-invasive plasma metabolic biomarkers.

Methods

We conducted a two-phase study involving 647 participants, comprising 277 GC and 370 non-GC. Candidate differential metabolites were identified in the discovery and validation phases using ultra-performance liquid chromatography-mass spectrometry, and a diagnostic model was developed using machine-learning algorithms. Then, mendelian randomization (MR) analysis was used to examine the causal association between metabolic biomarkers and the risk of GC. These metabolic biomarkers were validated in the GC tissue by comparing them with tumor-adjacent non-malignant paired tissue.

Results

Twenty-six replicated plasma metabolites were identified in the discovery and validation dataset. Six features were selected to construct a metabolic panel with excellent diagnostic performance (AUCs of 0.947–0.982 in the discovery dataset and 0.920–0.951 in the validation dataset). The sensitivity of the panel (0.900–0.940) significantly outperformed traditional clinical protein biomarkers (0.020–0.240). The panel also exhibited promise in early GC detection, with AUCs of 0.914–0.961 in the discovery dataset and 0.894–0.940 in the validation dataset. Among the identified metabolites, eight were traced differentially expressed in GC and paired adjacent tissues, and two (2-hydroxy-3-methylvalerate, isovalerylcarnitine(C5)) were causally linked with GC in MR analysis.

Conclusions

This study identifies promising metabolic signatures for GC diagnosis and develops a reliable diagnostic model. The findings underscore the potential of metabolic analysis for accurate screening and early detection of GC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MasterE完成签到,获得积分10
1秒前
我的小伙伴应助feng采纳,获得10
1秒前
善学以致用应助feng采纳,获得10
1秒前
2秒前
2秒前
gaoww发布了新的文献求助10
2秒前
小二发布了新的文献求助10
6秒前
solobang发布了新的文献求助10
7秒前
CodeCraft应助Jocelyn7采纳,获得10
7秒前
秋之月完成签到,获得积分10
7秒前
8秒前
cheche关注了科研通微信公众号
8秒前
9秒前
科研小民工应助kento采纳,获得50
10秒前
完美世界应助小萌采纳,获得10
11秒前
11秒前
gaoww完成签到,获得积分10
11秒前
12秒前
WZ0904发布了新的文献求助10
12秒前
12秒前
lab完成签到 ,获得积分0
12秒前
小蘑菇应助今今采纳,获得10
13秒前
CodeCraft应助秋之月采纳,获得10
13秒前
I1waml完成签到 ,获得积分10
13秒前
13秒前
guygun完成签到,获得积分10
13秒前
zho发布了新的文献求助10
14秒前
独特亦旋发布了新的文献求助10
14秒前
15秒前
研友_LOqqmZ完成签到,获得积分10
16秒前
16秒前
英俊的铭应助文献查找采纳,获得10
16秒前
solobang发布了新的文献求助10
16秒前
Jasper应助老迟到的书雁采纳,获得10
19秒前
orixero应助小二采纳,获得10
19秒前
20秒前
20秒前
simple完成签到,获得积分10
20秒前
caoyy发布了新的文献求助10
20秒前
赵小可可可可完成签到,获得积分10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824