IDDF2024-ABS-0166 Metabolomics-driven plasma and tissue signatures and machine learning for gastric cancer diagnosis: a retrospective study and mendelian randomization study

孟德尔随机化 代谢组学 癌症 代谢组 生物标志物发现 恶性肿瘤 医学 计算生物学 生物信息学 肿瘤科 内科学 生物 蛋白质组学 生物化学 基因 基因型 遗传变异
作者
Juan Zhu,Xue Li,Yida Huang,Lingbin Du
标识
DOI:10.1136/gutjnl-2024-iddf.267
摘要

Background

Gastric cancer (GC) is a highly prevalent and deadly malignancy, necessitating timely diagnosis and intervention. However, current diagnoses predominantly hinge on gastroscopy, limited by invasiveness and low uptake rates. We aimed to develop diagnostic models for GC utilizing non-invasive plasma metabolic biomarkers.

Methods

We conducted a two-phase study involving 647 participants, comprising 277 GC and 370 non-GC. Candidate differential metabolites were identified in the discovery and validation phases using ultra-performance liquid chromatography-mass spectrometry, and a diagnostic model was developed using machine-learning algorithms. Then, mendelian randomization (MR) analysis was used to examine the causal association between metabolic biomarkers and the risk of GC. These metabolic biomarkers were validated in the GC tissue by comparing them with tumor-adjacent non-malignant paired tissue.

Results

Twenty-six replicated plasma metabolites were identified in the discovery and validation dataset. Six features were selected to construct a metabolic panel with excellent diagnostic performance (AUCs of 0.947–0.982 in the discovery dataset and 0.920–0.951 in the validation dataset). The sensitivity of the panel (0.900–0.940) significantly outperformed traditional clinical protein biomarkers (0.020–0.240). The panel also exhibited promise in early GC detection, with AUCs of 0.914–0.961 in the discovery dataset and 0.894–0.940 in the validation dataset. Among the identified metabolites, eight were traced differentially expressed in GC and paired adjacent tissues, and two (2-hydroxy-3-methylvalerate, isovalerylcarnitine(C5)) were causally linked with GC in MR analysis.

Conclusions

This study identifies promising metabolic signatures for GC diagnosis and develops a reliable diagnostic model. The findings underscore the potential of metabolic analysis for accurate screening and early detection of GC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
InfoNinja应助宋菲菲菲菲采纳,获得30
2秒前
lalala发布了新的文献求助10
2秒前
安慧容发布了新的文献求助10
2秒前
3秒前
科研通AI2S应助假面绅士采纳,获得10
3秒前
Mm完成签到,获得积分10
3秒前
4秒前
ananla完成签到,获得积分10
4秒前
haha完成签到,获得积分10
4秒前
Lewis完成签到,获得积分20
5秒前
乐观的盼秋完成签到,获得积分10
5秒前
5秒前
受伤的靖琪完成签到,获得积分10
5秒前
眼药水完成签到,获得积分10
5秒前
威武冷雪发布了新的文献求助10
6秒前
武文信发布了新的文献求助10
6秒前
阔达荣轩完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
眼药水发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
amazing39完成签到,获得积分10
11秒前
啊啊啊发布了新的文献求助10
12秒前
16完成签到 ,获得积分10
12秒前
搜集达人应助武文信采纳,获得10
13秒前
嘟噜发布了新的文献求助10
13秒前
14秒前
DDD42发布了新的文献求助10
15秒前
抖逗豆完成签到,获得积分10
15秒前
amazing39发布了新的文献求助10
16秒前
banbieshenlu完成签到,获得积分10
17秒前
InfoNinja应助111111111采纳,获得30
18秒前
安慧容完成签到,获得积分10
18秒前
18秒前
xy完成签到,获得积分10
19秒前
Aira发布了新的文献求助10
20秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141752
求助须知:如何正确求助?哪些是违规求助? 2792710
关于积分的说明 7803941
捐赠科研通 2448986
什么是DOI,文献DOI怎么找? 1303011
科研通“疑难数据库(出版商)”最低求助积分说明 626717
版权声明 601244