Segmentation and Vascular Vectorization for Coronary Artery by Geometry-based Cascaded Neural Network

矢量化(数学) 分割 人工神经网络 人工智能 计算机科学 图像分割 动脉 计算机视觉 几何学 医学 内科学 数学 并行计算
作者
Xiaoyu Yang,Lijian Xu,Simon C.H. Yu,Qing Xia,Hongsheng Li,Shaoting Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/tmi.2024.3435714
摘要

Segmentation of the coronary artery is an important task for the quantitative analysis of coronary computed tomography angiography (CCTA) images and is being stimulated by the field of deep learning. However, the complex structures with tiny and narrow branches of the coronary artery bring it a great challenge. Coupled with the medical image limitations of low resolution and poor contrast, fragmentations of segmented vessels frequently occur in the prediction. Therefore, a geometry-based cascaded segmentation method is proposed for the coronary artery, which has the following innovations: 1) Integrating geometric deformation networks, we design a cascaded network for segmenting the coronary artery and vectorizing results. The generated meshes of the coronary artery are continuous and accurate for twisted and sophisticated coronary artery structures, without fragmentations. 2) Different from mesh annotations generated by the traditional marching cube method from voxel-based labels, a finer vectorized mesh of the coronary artery is reconstructed with the regularized morphology. The novel mesh annotation benefits the geometry-based segmentation network, avoiding bifurcation adhesion and point cloud dispersion in intricate branches. 3) A dataset named CCA-200 is collected, consisting of 200 CCTA images with coronary artery disease. The ground truths of 200 cases are coronary internal diameter annotations by professional radiologists. Extensive experiments verify our method on our collected dataset CCA-200 and public ASOCA dataset, with a Dice of 0.778 on CCA-200 and 0.895 on ASOCA, showing superior results. Especially, our geometry-based model generates an accurate, intact and smooth coronary artery, devoid of any fragmentations of segmented vessels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
LK发布了新的文献求助10
1秒前
2秒前
2秒前
luna完成签到,获得积分10
2秒前
景胜杰发布了新的文献求助10
3秒前
小二郎应助在水一方采纳,获得10
3秒前
3秒前
飘雪发布了新的文献求助10
3秒前
4秒前
科研通AI5应助zxzxzx采纳,获得10
4秒前
6秒前
rubbish完成签到 ,获得积分10
7秒前
木木完成签到,获得积分10
7秒前
zz完成签到,获得积分10
7秒前
所所应助tangtangchaotian采纳,获得10
7秒前
xyz完成签到,获得积分10
7秒前
8秒前
zzm发布了新的文献求助10
8秒前
xianhe关注了科研通微信公众号
8秒前
Mrivy完成签到,获得积分10
9秒前
9秒前
10秒前
景胜杰完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
peanuttt发布了新的文献求助10
10秒前
Orange应助木木采纳,获得10
10秒前
纯情小火鸡完成签到,获得积分20
10秒前
飞飞发布了新的文献求助10
10秒前
科研通AI5应助non采纳,获得10
11秒前
Orange应助岁月轮回采纳,获得10
11秒前
鲤鱼奇异果完成签到,获得积分10
12秒前
13秒前
13秒前
你66完成签到,获得积分10
13秒前
亚麻沙金完成签到,获得积分20
13秒前
cloudyick发布了新的文献求助30
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553582
求助须知:如何正确求助?哪些是违规求助? 3129521
关于积分的说明 9382550
捐赠科研通 2828636
什么是DOI,文献DOI怎么找? 1555065
邀请新用户注册赠送积分活动 725800
科研通“疑难数据库(出版商)”最低求助积分说明 715212