Research on the Construction Method of Curriculum Teaching Knowledge Graph Based on Bi-LSTM and CNN Algorithm

课程 图形 计算机科学 算法 人工智能 数学教育 理论计算机科学 数学 社会学 教育学
作者
Hui Liu
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s0129156425400294
摘要

The aim of the paper is to explore a method of constructing a curriculum teaching knowledge graph by combining Bi-LSTM and convolutional neural network (CNN) algorithm. The field of education is constantly seeking innovation to improve teaching results and student learning experience. Knowledge graph, as an advanced technology of structured representation of knowledge, is expected to provide effective support for teaching management and personalized learning. First, this paper introduces the background and significance of the curriculum teaching knowledge graph. By establishing knowledge maps, we can more clearly present the knowledge system and correlation in the curriculum, which helps teachers to design more targeted teaching content and provide personalized learning paths for students. However, traditional knowledge graph construction methods are often faced with problems such as incomplete information capture and inaccurate semantic association, so it is necessary to introduce advanced deep learning algorithms to improve the quality of knowledge graph. Secondly, this paper elaborates on the construction method of fusion Bi-LSTM and CNN algorithm. Bi-LSTM, as a recurrent neural network capable of capturing sequence information, can better model the evolution process of knowledge in the course. As a CNN is good at extracting local features, CNN can effectively capture the spatial structure information in the knowledge graph. By integrating two, we can improve the expression ability and reasoning accuracy of knowledge graph. Further, the experimental results show that the fusion Bi-LSTM and the CNN algorithm have significantly improved the accuracy of information capture and inference compared with the traditional method. In summary, this paper proposes an innovative construction method of curriculum teaching knowledge graph by integrating Bi-LSTM and CNN algorithm, which provides new ideas and solutions for informatization and personalized teaching in the field of education. In the future, the applicability of this method in different disciplines and teaching scenarios can be further discussed, and more advanced technologies can be combined to continuously improve and expand the research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nlyk完成签到,获得积分10
1秒前
彩色橘子完成签到 ,获得积分10
1秒前
大模型应助huhu采纳,获得10
1秒前
阳光项链发布了新的文献求助10
2秒前
桐桐应助初夏发SCI采纳,获得10
2秒前
Emma完成签到 ,获得积分10
2秒前
Lily发布了新的文献求助10
3秒前
3秒前
you998308完成签到,获得积分20
3秒前
武雨寒发布了新的文献求助10
6秒前
6秒前
7秒前
yidi01完成签到,获得积分10
7秒前
7秒前
打打应助sciN采纳,获得10
9秒前
10秒前
小夏完成签到 ,获得积分0
10秒前
黄婷发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
华仔应助舒庆春采纳,获得10
12秒前
YamDaamCaa应助眯眯眼的友绿采纳,获得30
12秒前
量子星尘发布了新的文献求助10
13秒前
壳米应助Tin采纳,获得10
13秒前
14秒前
14秒前
Barney关注了科研通微信公众号
14秒前
14秒前
考拉发布了新的文献求助10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
Lucas应助科研通管家采纳,获得30
15秒前
研友_VZG7GZ应助科研通管家采纳,获得10
15秒前
15秒前
ding应助科研通管家采纳,获得10
15秒前
15秒前
ll应助科研通管家采纳,获得10
15秒前
思源应助科研通管家采纳,获得10
15秒前
shinysparrow应助科研通管家采纳,获得200
15秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975836
求助须知:如何正确求助?哪些是违规求助? 3520174
关于积分的说明 11201364
捐赠科研通 3256576
什么是DOI,文献DOI怎么找? 1798362
邀请新用户注册赠送积分活动 877539
科研通“疑难数据库(出版商)”最低求助积分说明 806426