Research on the Construction Method of Curriculum Teaching Knowledge Graph Based on Bi-LSTM and CNN Algorithm

课程 图形 计算机科学 算法 人工智能 数学教育 理论计算机科学 数学 社会学 教育学
作者
Hui Liu
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s0129156425400294
摘要

The aim of the paper is to explore a method of constructing a curriculum teaching knowledge graph by combining Bi-LSTM and convolutional neural network (CNN) algorithm. The field of education is constantly seeking innovation to improve teaching results and student learning experience. Knowledge graph, as an advanced technology of structured representation of knowledge, is expected to provide effective support for teaching management and personalized learning. First, this paper introduces the background and significance of the curriculum teaching knowledge graph. By establishing knowledge maps, we can more clearly present the knowledge system and correlation in the curriculum, which helps teachers to design more targeted teaching content and provide personalized learning paths for students. However, traditional knowledge graph construction methods are often faced with problems such as incomplete information capture and inaccurate semantic association, so it is necessary to introduce advanced deep learning algorithms to improve the quality of knowledge graph. Secondly, this paper elaborates on the construction method of fusion Bi-LSTM and CNN algorithm. Bi-LSTM, as a recurrent neural network capable of capturing sequence information, can better model the evolution process of knowledge in the course. As a CNN is good at extracting local features, CNN can effectively capture the spatial structure information in the knowledge graph. By integrating two, we can improve the expression ability and reasoning accuracy of knowledge graph. Further, the experimental results show that the fusion Bi-LSTM and the CNN algorithm have significantly improved the accuracy of information capture and inference compared with the traditional method. In summary, this paper proposes an innovative construction method of curriculum teaching knowledge graph by integrating Bi-LSTM and CNN algorithm, which provides new ideas and solutions for informatization and personalized teaching in the field of education. In the future, the applicability of this method in different disciplines and teaching scenarios can be further discussed, and more advanced technologies can be combined to continuously improve and expand the research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小孙发布了新的文献求助10
1秒前
朴实山兰发布了新的文献求助10
2秒前
bao应助动听从寒采纳,获得10
3秒前
金金金完成签到,获得积分20
3秒前
hhhan完成签到,获得积分10
3秒前
mhl11应助小所采纳,获得10
4秒前
Jessica发布了新的文献求助10
5秒前
完美世界应助ChenYX采纳,获得10
5秒前
henry先森完成签到,获得积分10
5秒前
happyboy2008完成签到,获得积分10
5秒前
太行神鹰完成签到,获得积分20
6秒前
猫猫虫完成签到 ,获得积分10
6秒前
8秒前
8秒前
冷酷慕山完成签到,获得积分20
8秒前
9秒前
chenchenchen发布了新的文献求助100
10秒前
10秒前
12秒前
777发布了新的文献求助10
13秒前
14秒前
Jasper应助科研通管家采纳,获得10
14秒前
ksr8888应助科研通管家采纳,获得10
15秒前
无花果应助科研通管家采纳,获得10
15秒前
嘉心糖应助科研通管家采纳,获得20
15秒前
李爱国应助科研通管家采纳,获得10
15秒前
ksr8888应助科研通管家采纳,获得10
15秒前
15秒前
丘比特应助科研通管家采纳,获得10
15秒前
HCLonely应助科研通管家采纳,获得10
15秒前
asdxsweef应助科研通管家采纳,获得30
15秒前
我是老大应助科研通管家采纳,获得10
15秒前
16秒前
17秒前
19秒前
小浩浩发布了新的文献求助10
19秒前
21秒前
剑影完成签到,获得积分10
21秒前
kk完成签到,获得积分10
24秒前
wali完成签到 ,获得积分10
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313711
求助须知:如何正确求助?哪些是违规求助? 2946037
关于积分的说明 8527998
捐赠科研通 2621608
什么是DOI,文献DOI怎么找? 1433953
科研通“疑难数据库(出版商)”最低求助积分说明 665098
邀请新用户注册赠送积分活动 650651