Research on the Construction Method of Curriculum Teaching Knowledge Graph Based on Bi-LSTM and CNN Algorithm

课程 图形 计算机科学 算法 人工智能 数学教育 理论计算机科学 数学 社会学 教育学
作者
Hui Liu
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s0129156425400294
摘要

The aim of the paper is to explore a method of constructing a curriculum teaching knowledge graph by combining Bi-LSTM and convolutional neural network (CNN) algorithm. The field of education is constantly seeking innovation to improve teaching results and student learning experience. Knowledge graph, as an advanced technology of structured representation of knowledge, is expected to provide effective support for teaching management and personalized learning. First, this paper introduces the background and significance of the curriculum teaching knowledge graph. By establishing knowledge maps, we can more clearly present the knowledge system and correlation in the curriculum, which helps teachers to design more targeted teaching content and provide personalized learning paths for students. However, traditional knowledge graph construction methods are often faced with problems such as incomplete information capture and inaccurate semantic association, so it is necessary to introduce advanced deep learning algorithms to improve the quality of knowledge graph. Secondly, this paper elaborates on the construction method of fusion Bi-LSTM and CNN algorithm. Bi-LSTM, as a recurrent neural network capable of capturing sequence information, can better model the evolution process of knowledge in the course. As a CNN is good at extracting local features, CNN can effectively capture the spatial structure information in the knowledge graph. By integrating two, we can improve the expression ability and reasoning accuracy of knowledge graph. Further, the experimental results show that the fusion Bi-LSTM and the CNN algorithm have significantly improved the accuracy of information capture and inference compared with the traditional method. In summary, this paper proposes an innovative construction method of curriculum teaching knowledge graph by integrating Bi-LSTM and CNN algorithm, which provides new ideas and solutions for informatization and personalized teaching in the field of education. In the future, the applicability of this method in different disciplines and teaching scenarios can be further discussed, and more advanced technologies can be combined to continuously improve and expand the research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LZ的脑子发布了新的文献求助20
刚刚
方仔完成签到,获得积分10
刚刚
刚刚
make217完成签到 ,获得积分10
1秒前
CanLiu完成签到,获得积分10
1秒前
1秒前
yukky完成签到,获得积分10
2秒前
2秒前
科研通AI5应助yu采纳,获得30
2秒前
Lucas应助霞霞采纳,获得10
3秒前
方仔发布了新的文献求助10
3秒前
3秒前
3秒前
水晶完成签到,获得积分10
4秒前
科研通AI5应助jyyg采纳,获得10
4秒前
mailure发布了新的文献求助20
5秒前
沉默沛岚发布了新的文献求助10
5秒前
5秒前
师霸完成签到,获得积分10
5秒前
momucy完成签到,获得积分10
5秒前
小浣熊发布了新的文献求助10
5秒前
5秒前
鲸鱼发布了新的文献求助10
6秒前
6秒前
6秒前
Sunshine发布了新的文献求助10
6秒前
tyliu完成签到,获得积分10
6秒前
7秒前
momucy发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
adasdad完成签到,获得积分10
9秒前
李不开你发布了新的文献求助10
9秒前
10秒前
阿刚发布了新的文献求助10
11秒前
JazzWon完成签到,获得积分10
11秒前
ZYao65发布了新的文献求助10
13秒前
今日不再蛇皇应助离离采纳,获得30
13秒前
沉默沛岚完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600474
求助须知:如何正确求助?哪些是违规求助? 4010608
关于积分的说明 12416866
捐赠科研通 3690360
什么是DOI,文献DOI怎么找? 2034326
邀请新用户注册赠送积分活动 1067728
科研通“疑难数据库(出版商)”最低求助积分说明 952513