Research on the Construction Method of Curriculum Teaching Knowledge Graph Based on Bi-LSTM and CNN Algorithm

课程 图形 计算机科学 算法 人工智能 数学教育 理论计算机科学 数学 社会学 教育学
作者
Hui Liu
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s0129156425400294
摘要

The aim of the paper is to explore a method of constructing a curriculum teaching knowledge graph by combining Bi-LSTM and convolutional neural network (CNN) algorithm. The field of education is constantly seeking innovation to improve teaching results and student learning experience. Knowledge graph, as an advanced technology of structured representation of knowledge, is expected to provide effective support for teaching management and personalized learning. First, this paper introduces the background and significance of the curriculum teaching knowledge graph. By establishing knowledge maps, we can more clearly present the knowledge system and correlation in the curriculum, which helps teachers to design more targeted teaching content and provide personalized learning paths for students. However, traditional knowledge graph construction methods are often faced with problems such as incomplete information capture and inaccurate semantic association, so it is necessary to introduce advanced deep learning algorithms to improve the quality of knowledge graph. Secondly, this paper elaborates on the construction method of fusion Bi-LSTM and CNN algorithm. Bi-LSTM, as a recurrent neural network capable of capturing sequence information, can better model the evolution process of knowledge in the course. As a CNN is good at extracting local features, CNN can effectively capture the spatial structure information in the knowledge graph. By integrating two, we can improve the expression ability and reasoning accuracy of knowledge graph. Further, the experimental results show that the fusion Bi-LSTM and the CNN algorithm have significantly improved the accuracy of information capture and inference compared with the traditional method. In summary, this paper proposes an innovative construction method of curriculum teaching knowledge graph by integrating Bi-LSTM and CNN algorithm, which provides new ideas and solutions for informatization and personalized teaching in the field of education. In the future, the applicability of this method in different disciplines and teaching scenarios can be further discussed, and more advanced technologies can be combined to continuously improve and expand the research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ghy完成签到 ,获得积分10
刚刚
彩色开山完成签到,获得积分10
1秒前
热心的秋莲完成签到,获得积分10
1秒前
寒梅恋雪发布了新的文献求助10
2秒前
ding应助外向的醉易采纳,获得10
2秒前
可问春风完成签到,获得积分10
3秒前
体贴凌柏完成签到,获得积分10
4秒前
贫穷的塔姆完成签到,获得积分10
5秒前
我在南湾湖边完成签到,获得积分10
5秒前
快乐的雨竹完成签到,获得积分10
6秒前
虚心的雁完成签到,获得积分10
7秒前
浩浩完成签到 ,获得积分0
8秒前
9秒前
lpx43完成签到,获得积分10
9秒前
zz2905发布了新的文献求助10
12秒前
一蓑烟雨完成签到,获得积分10
12秒前
12秒前
14秒前
崔崔发布了新的文献求助10
15秒前
ff不吃芹菜完成签到,获得积分10
16秒前
叶子完成签到,获得积分10
16秒前
唐唐完成签到,获得积分10
17秒前
123发布了新的文献求助10
17秒前
20秒前
朵朵完成签到,获得积分10
22秒前
发呆的小号完成签到 ,获得积分10
22秒前
充电宝应助原本采纳,获得10
24秒前
山260完成签到 ,获得积分10
24秒前
badada完成签到,获得积分10
24秒前
田様应助科研通管家采纳,获得10
26秒前
大模型应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
伶俐乐菱应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
27秒前
shadow完成签到,获得积分10
28秒前
sen123完成签到,获得积分10
29秒前
123完成签到,获得积分20
30秒前
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022