Research on the Construction Method of Curriculum Teaching Knowledge Graph Based on Bi-LSTM and CNN Algorithm

课程 图形 计算机科学 算法 人工智能 数学教育 理论计算机科学 数学 社会学 教育学
作者
Hui Liu
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s0129156425400294
摘要

The aim of the paper is to explore a method of constructing a curriculum teaching knowledge graph by combining Bi-LSTM and convolutional neural network (CNN) algorithm. The field of education is constantly seeking innovation to improve teaching results and student learning experience. Knowledge graph, as an advanced technology of structured representation of knowledge, is expected to provide effective support for teaching management and personalized learning. First, this paper introduces the background and significance of the curriculum teaching knowledge graph. By establishing knowledge maps, we can more clearly present the knowledge system and correlation in the curriculum, which helps teachers to design more targeted teaching content and provide personalized learning paths for students. However, traditional knowledge graph construction methods are often faced with problems such as incomplete information capture and inaccurate semantic association, so it is necessary to introduce advanced deep learning algorithms to improve the quality of knowledge graph. Secondly, this paper elaborates on the construction method of fusion Bi-LSTM and CNN algorithm. Bi-LSTM, as a recurrent neural network capable of capturing sequence information, can better model the evolution process of knowledge in the course. As a CNN is good at extracting local features, CNN can effectively capture the spatial structure information in the knowledge graph. By integrating two, we can improve the expression ability and reasoning accuracy of knowledge graph. Further, the experimental results show that the fusion Bi-LSTM and the CNN algorithm have significantly improved the accuracy of information capture and inference compared with the traditional method. In summary, this paper proposes an innovative construction method of curriculum teaching knowledge graph by integrating Bi-LSTM and CNN algorithm, which provides new ideas and solutions for informatization and personalized teaching in the field of education. In the future, the applicability of this method in different disciplines and teaching scenarios can be further discussed, and more advanced technologies can be combined to continuously improve and expand the research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yahong发布了新的文献求助10
刚刚
WILD完成签到 ,获得积分10
1秒前
1秒前
sandse7en完成签到 ,获得积分10
1秒前
zyq发布了新的文献求助10
2秒前
一一完成签到,获得积分10
3秒前
神勇难胜发布了新的文献求助10
3秒前
李蝶儿完成签到 ,获得积分10
4秒前
7秒前
机灵剑通完成签到,获得积分10
12秒前
科研通AI2S应助藏识采纳,获得200
12秒前
慕青应助开心电源采纳,获得10
12秒前
孤独的从彤完成签到,获得积分10
13秒前
15秒前
星辰大海应助科研小弟采纳,获得10
16秒前
研友_VZG7GZ应助酷酷画笔采纳,获得50
17秒前
17秒前
居居子完成签到,获得积分10
17秒前
崔崔完成签到,获得积分20
18秒前
小月顺利毕业版完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
C57的狂想发布了新的文献求助10
20秒前
20秒前
卢鑫发布了新的文献求助10
20秒前
宇文宛菡完成签到 ,获得积分0
20秒前
酷酷画笔完成签到,获得积分10
21秒前
22秒前
欧阳蛋蛋鸡完成签到 ,获得积分10
23秒前
23秒前
24秒前
崔崔发布了新的文献求助10
24秒前
蓝色的鱼发布了新的文献求助10
25秒前
超级大聪明完成签到,获得积分10
25秒前
26秒前
小研大究完成签到,获得积分10
27秒前
29秒前
顾矜应助123456789采纳,获得10
29秒前
任性雨筠完成签到,获得积分10
29秒前
巴拉巴拉完成签到 ,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419355
求助须知:如何正确求助?哪些是违规求助? 4534651
关于积分的说明 14146107
捐赠科研通 4451251
什么是DOI,文献DOI怎么找? 2441667
邀请新用户注册赠送积分活动 1433233
关于科研通互助平台的介绍 1410533