IEA-Net: Internal and External Dual-Attention Medical Segmentation Network with High-Performance Convolutional Blocks

计算机科学 分割 人工智能 编码器 特征(语言学) 模式识别(心理学) 样品(材料) 特征提取 领域(数学) 卷积(计算机科学) 任务(项目管理) 图像分割 深度学习 人工神经网络 数学 工程类 哲学 语言学 化学 系统工程 色谱法 纯数学 操作系统
作者
Bincheng Peng,Chao Fan
标识
DOI:10.1007/s10278-024-01217-4
摘要

Currently, deep learning is developing rapidly in the field of image segmentation, and medical image segmentation is one of the key applications in this field. Conventional CNN has achieved great success in general medical image segmentation tasks, but it has feature loss in the feature extraction part and lacks the ability to explicitly model remote dependencies, which makes it difficult to adapt to the task of human organ segmentation. Although methods containing attention mechanisms have made good progress in the field of semantic segmentation, most of the current attention mechanisms are limited to a single sample, while the number of samples of human organ images is large, ignoring the correlation between the samples is not conducive to image segmentation. In order to solve these problems, an internal and external dual-attention segmentation network (IEA-Net) is proposed in this paper, and the ICSwR (interleaved convolutional system with residual) module and the IEAM module are designed in this network. The ICSwR contains interleaved convolution and hopping connection, which are used for the initial extraction of the features in the encoder part. The IEAM module (internal and external dual-attention module) consists of the LGGW-SA (local-global Gaussian-weighted self-attention) module and the EA module, which are in a tandem structure. The LGGW-SA module focuses on learning local-global feature correlations within individual samples for efficient feature extraction. Meanwhile, the EA module is designed to capture inter-sample connections, addressing multi-sample complexities. Additionally, skip connections will be incorporated into each IEAM module within both the encoder and decoder to reduce feature loss. We tested our method on the Synapse multi-organ segmentation dataset and the ACDC cardiac segmentation dataset, and the experimental results show that the proposed method achieves better performance than other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
chuanxue发布了新的文献求助10
2秒前
yyc完成签到,获得积分10
4秒前
Tasia发布了新的文献求助10
5秒前
艾斯发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
6秒前
挽秋完成签到,获得积分10
6秒前
8秒前
zfr完成签到,获得积分10
10秒前
彩色的俊驰完成签到,获得积分10
10秒前
灵巧的幻竹完成签到,获得积分10
10秒前
10秒前
10秒前
mins发布了新的文献求助10
10秒前
善逸发布了新的文献求助10
10秒前
Owen应助chuanxue采纳,获得10
11秒前
22222发布了新的文献求助10
11秒前
天天快乐应助牛马采纳,获得10
14秒前
岱山完成签到,获得积分10
15秒前
La完成签到 ,获得积分10
16秒前
今后应助KON采纳,获得10
16秒前
Takahara2000完成签到,获得积分10
16秒前
无限的山水完成签到 ,获得积分10
17秒前
18秒前
Owen应助艾斯采纳,获得10
18秒前
BCS关闭了BCS文献求助
18秒前
Ava应助Camille采纳,获得10
18秒前
ssdbr完成签到 ,获得积分10
18秒前
19秒前
19秒前
19秒前
ycy完成签到,获得积分20
20秒前
21秒前
俭朴夜雪完成签到,获得积分10
21秒前
22秒前
上善若水完成签到 ,获得积分10
22秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252271
求助须知:如何正确求助?哪些是违规求助? 4416124
关于积分的说明 13748660
捐赠科研通 4288014
什么是DOI,文献DOI怎么找? 2352722
邀请新用户注册赠送积分活动 1349497
关于科研通互助平台的介绍 1309009