IEA-Net: Internal and External Dual-Attention Medical Segmentation Network with High-Performance Convolutional Blocks

计算机科学 分割 人工智能 编码器 特征(语言学) 模式识别(心理学) 样品(材料) 特征提取 领域(数学) 卷积(计算机科学) 任务(项目管理) 图像分割 深度学习 人工神经网络 数学 工程类 哲学 语言学 化学 系统工程 色谱法 纯数学 操作系统
作者
Bincheng Peng,Chao Fan
标识
DOI:10.1007/s10278-024-01217-4
摘要

Currently, deep learning is developing rapidly in the field of image segmentation, and medical image segmentation is one of the key applications in this field. Conventional CNN has achieved great success in general medical image segmentation tasks, but it has feature loss in the feature extraction part and lacks the ability to explicitly model remote dependencies, which makes it difficult to adapt to the task of human organ segmentation. Although methods containing attention mechanisms have made good progress in the field of semantic segmentation, most of the current attention mechanisms are limited to a single sample, while the number of samples of human organ images is large, ignoring the correlation between the samples is not conducive to image segmentation. In order to solve these problems, an internal and external dual-attention segmentation network (IEA-Net) is proposed in this paper, and the ICSwR (interleaved convolutional system with residual) module and the IEAM module are designed in this network. The ICSwR contains interleaved convolution and hopping connection, which are used for the initial extraction of the features in the encoder part. The IEAM module (internal and external dual-attention module) consists of the LGGW-SA (local-global Gaussian-weighted self-attention) module and the EA module, which are in a tandem structure. The LGGW-SA module focuses on learning local-global feature correlations within individual samples for efficient feature extraction. Meanwhile, the EA module is designed to capture inter-sample connections, addressing multi-sample complexities. Additionally, skip connections will be incorporated into each IEAM module within both the encoder and decoder to reduce feature loss. We tested our method on the Synapse multi-organ segmentation dataset and the ACDC cardiac segmentation dataset, and the experimental results show that the proposed method achieves better performance than other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
行路难发布了新的文献求助10
1秒前
2秒前
小蘑菇应助小祯采纳,获得10
2秒前
英俊的铭应助nmamtf采纳,获得10
3秒前
hh完成签到,获得积分10
4秒前
4秒前
5秒前
科研王发布了新的文献求助10
5秒前
屠建锋完成签到,获得积分10
6秒前
6秒前
xzz完成签到 ,获得积分10
6秒前
谨慎惋庭发布了新的文献求助10
7秒前
8秒前
8秒前
plant完成签到 ,获得积分10
8秒前
博修发布了新的文献求助10
9秒前
11秒前
华仔应助谨慎惋庭采纳,获得10
11秒前
12秒前
bloodice发布了新的文献求助10
12秒前
黎明的第一道曙光完成签到 ,获得积分10
13秒前
不懈奋进应助dablack采纳,获得30
14秒前
14秒前
wanci应助着急的盼山采纳,获得10
14秒前
快乐小子发布了新的文献求助10
14秒前
cocolu应助一叶知秋采纳,获得10
15秒前
Hello应助科研王采纳,获得10
15秒前
WANG发布了新的文献求助10
15秒前
悲凉的靖易完成签到,获得积分10
16秒前
番茄鱼完成签到 ,获得积分10
16秒前
干净傲霜完成签到,获得积分10
16秒前
顾矜应助博修采纳,获得10
17秒前
游01完成签到 ,获得积分10
18秒前
机灵的曼岚完成签到,获得积分10
18秒前
19秒前
19秒前
20秒前
顺心绮兰完成签到,获得积分10
20秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343504
求助须知:如何正确求助?哪些是违规求助? 2970547
关于积分的说明 8644499
捐赠科研通 2650612
什么是DOI,文献DOI怎么找? 1451426
科研通“疑难数据库(出版商)”最低求助积分说明 672137
邀请新用户注册赠送积分活动 661545