IEA-Net: Internal and External Dual-Attention Medical Segmentation Network with High-Performance Convolutional Blocks

计算机科学 分割 人工智能 编码器 特征(语言学) 模式识别(心理学) 样品(材料) 特征提取 领域(数学) 卷积(计算机科学) 任务(项目管理) 图像分割 深度学习 人工神经网络 数学 工程类 操作系统 哲学 化学 色谱法 系统工程 纯数学 语言学
作者
Bincheng Peng,Chao Fan
标识
DOI:10.1007/s10278-024-01217-4
摘要

Currently, deep learning is developing rapidly in the field of image segmentation, and medical image segmentation is one of the key applications in this field. Conventional CNN has achieved great success in general medical image segmentation tasks, but it has feature loss in the feature extraction part and lacks the ability to explicitly model remote dependencies, which makes it difficult to adapt to the task of human organ segmentation. Although methods containing attention mechanisms have made good progress in the field of semantic segmentation, most of the current attention mechanisms are limited to a single sample, while the number of samples of human organ images is large, ignoring the correlation between the samples is not conducive to image segmentation. In order to solve these problems, an internal and external dual-attention segmentation network (IEA-Net) is proposed in this paper, and the ICSwR (interleaved convolutional system with residual) module and the IEAM module are designed in this network. The ICSwR contains interleaved convolution and hopping connection, which are used for the initial extraction of the features in the encoder part. The IEAM module (internal and external dual-attention module) consists of the LGGW-SA (local-global Gaussian-weighted self-attention) module and the EA module, which are in a tandem structure. The LGGW-SA module focuses on learning local-global feature correlations within individual samples for efficient feature extraction. Meanwhile, the EA module is designed to capture inter-sample connections, addressing multi-sample complexities. Additionally, skip connections will be incorporated into each IEAM module within both the encoder and decoder to reduce feature loss. We tested our method on the Synapse multi-organ segmentation dataset and the ACDC cardiac segmentation dataset, and the experimental results show that the proposed method achieves better performance than other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
重要谷冬发布了新的文献求助80
1秒前
2秒前
常常完成签到 ,获得积分10
2秒前
lx发布了新的文献求助10
2秒前
2秒前
SSY完成签到,获得积分10
4秒前
祗想静静嘚完成签到 ,获得积分10
4秒前
zzw完成签到,获得积分10
4秒前
苏黎世发布了新的文献求助10
4秒前
李大柱完成签到,获得积分10
4秒前
David完成签到,获得积分10
5秒前
周欣玙发布了新的文献求助10
5秒前
net80yhm发布了新的文献求助10
6秒前
NCU-Xzzzz完成签到,获得积分10
6秒前
拼搏一曲完成签到 ,获得积分10
7秒前
荒野风发布了新的文献求助10
7秒前
轻松的鸿煊完成签到 ,获得积分10
8秒前
NCU-Xzzzz发布了新的文献求助10
8秒前
10秒前
JJG完成签到,获得积分20
11秒前
Hello应助Tiam采纳,获得10
12秒前
12秒前
ty完成签到,获得积分10
14秒前
zehua309完成签到,获得积分10
15秒前
火星上含芙完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
掌门发布了新的文献求助10
18秒前
愉快的花卷完成签到,获得积分10
18秒前
少言完成签到,获得积分10
20秒前
kiko完成签到,获得积分10
21秒前
隐形惜筠完成签到 ,获得积分10
23秒前
黑眼圈完成签到,获得积分10
27秒前
123发布了新的文献求助10
29秒前
30秒前
31秒前
又又妈妈完成签到,获得积分10
31秒前
欢呼的丁真完成签到,获得积分10
32秒前
ty发布了新的文献求助10
32秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048