清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Evolving graph convolutional network with transformer for CT segmentation

计算机科学 分割 人工智能 模式识别(心理学) 图像分割 图形 成对比较 理论计算机科学
作者
Hui Cui,Qiangguo Jin,Xixi Wu,Linlin Wang,Tiangang Zhang,Toshiya Nakaguchi,Ping Xuan,Dagan Feng
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:165: 112069-112069
标识
DOI:10.1016/j.asoc.2024.112069
摘要

Accurate and robust organ and tumour segmentation from CT scans are critical for precision diagnosis and prognosis of cancer and the development of personalised treatment planning. However, the automatic segmentation of tumours and organs they invade is challenging because of significant variations, abnormalities, and unclear boundaries. While graph convolutional networks can propagate knowledge and correlations in a flexible feature space, they suffer from information saturation during deep learning, limiting their effectiveness. To overcome this issue, we propose a hybrid graph convolution transformer (HCGT) model that consists of a channel transformer (CTrans) and a convolutional graph transformer (convG-Trans). CTrans operates along the feature channel dimension to learn contextual relationships across different feature channels. The convG-Trans learns enriched relationships among distinct elements within the image by concurrently and interactively aggregating knowledge propagation from graph convolution and cross-node similarities from the transformer. Finally, a category-level attention is designed to understand the significance of the two representations from the CTrans and convG-Trans, which help adjust the fusion process before generating the segmentation output. We evaluate the HCGT on kidney and kidney tumour, and lung and non-small cell lung cancer datasets. Our evaluations include comparisons with three-dimensional (3D) medical image segmentation benchmarks and graph- and transformer-based segmentation models. The results demonstrate improved performance in abdominal and thorax organ and tumour segmentation tasks. Additionally, ablation studies show that the major technical innovations are effective and consistent when using different 3D medical image segmentation backbones.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RFlord发布了新的文献求助10
6秒前
zxcvvbb1001完成签到 ,获得积分10
30秒前
可爱沛蓝完成签到 ,获得积分10
39秒前
科目三应助科研通管家采纳,获得10
44秒前
49秒前
精明寒松完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
asultan发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
CSun完成签到,获得积分10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
Yoanna举报Jin_Xuli求助涉嫌违规
4分钟前
小二郎应助RFlord采纳,获得10
5分钟前
JiangYifan完成签到 ,获得积分10
6分钟前
6分钟前
RFlord发布了新的文献求助10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
gmc完成签到 ,获得积分10
6分钟前
糟糕的翅膀完成签到,获得积分10
7分钟前
7分钟前
arniu2008完成签到,获得积分20
7分钟前
Yoanna给起点的求助进行了留言
8分钟前
woxinyouyou完成签到,获得积分0
8分钟前
8分钟前
8分钟前
李志全完成签到 ,获得积分10
8分钟前
9分钟前
Judy完成签到 ,获得积分0
9分钟前
bbsheng完成签到,获得积分10
10分钟前
kisslll完成签到 ,获得积分10
11分钟前
量子星尘发布了新的文献求助10
11分钟前
11分钟前
11分钟前
假花之谎完成签到,获得积分10
12分钟前
科研通AI5应助wucl1990采纳,获得10
12分钟前
研友_nxw2xL完成签到,获得积分10
12分钟前
muriel完成签到,获得积分0
12分钟前
如歌完成签到,获得积分10
12分钟前
12分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5127916
求助须知:如何正确求助?哪些是违规求助? 4330811
关于积分的说明 13493730
捐赠科研通 4166547
什么是DOI,文献DOI怎么找? 2284058
邀请新用户注册赠送积分活动 1285045
关于科研通互助平台的介绍 1225368