Evolving graph convolutional network with transformer for CT segmentation

计算机科学 分割 人工智能 模式识别(心理学) 图像分割 图形 成对比较 理论计算机科学
作者
Hui Cui,Qiangguo Jin,Xixi Wu,Linlin Wang,Tiangang Zhang,Toshiya Nakaguchi,Ping Xuan,Dagan Feng
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:165: 112069-112069
标识
DOI:10.1016/j.asoc.2024.112069
摘要

Accurate and robust organ and tumour segmentation from CT scans are critical for precision diagnosis and prognosis of cancer and the development of personalised treatment planning. However, the automatic segmentation of tumours and organs they invade is challenging because of significant variations, abnormalities, and unclear boundaries. While graph convolutional networks can propagate knowledge and correlations in a flexible feature space, they suffer from information saturation during deep learning, limiting their effectiveness. To overcome this issue, we propose a hybrid graph convolution transformer (HCGT) model that consists of a channel transformer (CTrans) and a convolutional graph transformer (convG-Trans). CTrans operates along the feature channel dimension to learn contextual relationships across different feature channels. The convG-Trans learns enriched relationships among distinct elements within the image by concurrently and interactively aggregating knowledge propagation from graph convolution and cross-node similarities from the transformer. Finally, a category-level attention is designed to understand the significance of the two representations from the CTrans and convG-Trans, which help adjust the fusion process before generating the segmentation output. We evaluate the HCGT on kidney and kidney tumour, and lung and non-small cell lung cancer datasets. Our evaluations include comparisons with three-dimensional (3D) medical image segmentation benchmarks and graph- and transformer-based segmentation models. The results demonstrate improved performance in abdominal and thorax organ and tumour segmentation tasks. Additionally, ablation studies show that the major technical innovations are effective and consistent when using different 3D medical image segmentation backbones.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定的太清完成签到,获得积分10
1秒前
1秒前
LQS发布了新的文献求助10
2秒前
3秒前
红烧肉发布了新的文献求助10
4秒前
5秒前
呼吸第一口气的咽喉完成签到,获得积分10
5秒前
汉堡包应助蓝莓小蛋糕采纳,获得10
5秒前
在水一方应助困困土豆泥采纳,获得10
5秒前
高大曼香完成签到,获得积分10
5秒前
香蕉觅云应助远方采纳,获得30
5秒前
传奇3应助sola采纳,获得10
5秒前
忧郁土豆完成签到,获得积分10
6秒前
李金荣完成签到 ,获得积分10
6秒前
擎苍完成签到,获得积分20
6秒前
星辰大海应助学分采纳,获得30
6秒前
蓝桉发布了新的文献求助10
6秒前
一只凡凡发布了新的文献求助10
7秒前
syl完成签到,获得积分10
7秒前
情怀应助青塘龙仔采纳,获得10
7秒前
脑洞疼应助青塘龙仔采纳,获得10
7秒前
CodeCraft应助青塘龙仔采纳,获得10
7秒前
科研通AI6应助张永明采纳,获得10
9秒前
堀江真夏发布了新的文献求助10
9秒前
有趣的桃完成签到,获得积分10
10秒前
Kototo发布了新的文献求助10
10秒前
10秒前
李健的小迷弟应助jm采纳,获得10
10秒前
10秒前
天天快乐应助窦窦窦窦窦采纳,获得100
10秒前
12秒前
13秒前
桃子完成签到,获得积分10
13秒前
14秒前
14秒前
WangXiaoze发布了新的文献求助10
14秒前
15秒前
薰衣草发布了新的文献求助10
15秒前
15秒前
好叔叔发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5251905
求助须知:如何正确求助?哪些是违规求助? 4415834
关于积分的说明 13747630
捐赠科研通 4287647
什么是DOI,文献DOI怎么找? 2352548
邀请新用户注册赠送积分活动 1349348
关于科研通互助平台的介绍 1308876