Evolving graph convolutional network with transformer for CT segmentation

计算机科学 分割 人工智能 模式识别(心理学) 图像分割 图形 成对比较 理论计算机科学
作者
Hui Cui,Qiangguo Jin,Xixi Wu,Linlin Wang,Tiangang Zhang,Toshiya Nakaguchi,Ping Xuan,Dagan Feng
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:165: 112069-112069
标识
DOI:10.1016/j.asoc.2024.112069
摘要

Accurate and robust organ and tumour segmentation from CT scans are critical for precision diagnosis and prognosis of cancer and the development of personalised treatment planning. However, the automatic segmentation of tumours and organs they invade is challenging because of significant variations, abnormalities, and unclear boundaries. While graph convolutional networks can propagate knowledge and correlations in a flexible feature space, they suffer from information saturation during deep learning, limiting their effectiveness. To overcome this issue, we propose a hybrid graph convolution transformer (HCGT) model that consists of a channel transformer (CTrans) and a convolutional graph transformer (convG-Trans). CTrans operates along the feature channel dimension to learn contextual relationships across different feature channels. The convG-Trans learns enriched relationships among distinct elements within the image by concurrently and interactively aggregating knowledge propagation from graph convolution and cross-node similarities from the transformer. Finally, a category-level attention is designed to understand the significance of the two representations from the CTrans and convG-Trans, which help adjust the fusion process before generating the segmentation output. We evaluate the HCGT on kidney and kidney tumour, and lung and non-small cell lung cancer datasets. Our evaluations include comparisons with three-dimensional (3D) medical image segmentation benchmarks and graph- and transformer-based segmentation models. The results demonstrate improved performance in abdominal and thorax organ and tumour segmentation tasks. Additionally, ablation studies show that the major technical innovations are effective and consistent when using different 3D medical image segmentation backbones.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文献互助发布了新的文献求助10
刚刚
will发布了新的文献求助10
1秒前
2秒前
xxl完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
江江发布了新的文献求助10
5秒前
小丽完成签到,获得积分10
6秒前
Lucas应助Winter采纳,获得10
6秒前
阿晨发布了新的文献求助10
6秒前
JamesPei应助文静青梦采纳,获得10
7秒前
7秒前
陈业伟发布了新的文献求助10
8秒前
小白白发布了新的文献求助10
8秒前
所所应助嗨波采纳,获得10
9秒前
超级的丹琴完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
无花果应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得30
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
爆米花应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
浮游应助liuhanchi采纳,获得10
13秒前
我是老大应助liuhanchi采纳,获得10
13秒前
14秒前
传奇3应助小白白采纳,获得10
14秒前
15秒前
科研通AI6应助优雅草莓采纳,获得10
16秒前
琪琪发布了新的文献求助10
17秒前
17秒前
王大帅发布了新的文献求助10
17秒前
欢喜雪青发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941008
求助须知:如何正确求助?哪些是违规求助? 4207071
关于积分的说明 13076503
捐赠科研通 3985864
什么是DOI,文献DOI怎么找? 2182332
邀请新用户注册赠送积分活动 1197889
关于科研通互助平台的介绍 1110237