已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Evolving graph convolutional network with transformer for CT segmentation

计算机科学 分割 人工智能 模式识别(心理学) 图像分割 图形 成对比较 理论计算机科学
作者
Hui Cui,Qiangguo Jin,Xixi Wu,Linlin Wang,Tiangang Zhang,Toshiya Nakaguchi,Ping Xuan,Dagan Feng
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:165: 112069-112069
标识
DOI:10.1016/j.asoc.2024.112069
摘要

Accurate and robust organ and tumour segmentation from CT scans are critical for precision diagnosis and prognosis of cancer and the development of personalised treatment planning. However, the automatic segmentation of tumours and organs they invade is challenging because of significant variations, abnormalities, and unclear boundaries. While graph convolutional networks can propagate knowledge and correlations in a flexible feature space, they suffer from information saturation during deep learning, limiting their effectiveness. To overcome this issue, we propose a hybrid graph convolution transformer (HCGT) model that consists of a channel transformer (CTrans) and a convolutional graph transformer (convG-Trans). CTrans operates along the feature channel dimension to learn contextual relationships across different feature channels. The convG-Trans learns enriched relationships among distinct elements within the image by concurrently and interactively aggregating knowledge propagation from graph convolution and cross-node similarities from the transformer. Finally, a category-level attention is designed to understand the significance of the two representations from the CTrans and convG-Trans, which help adjust the fusion process before generating the segmentation output. We evaluate the HCGT on kidney and kidney tumour, and lung and non-small cell lung cancer datasets. Our evaluations include comparisons with three-dimensional (3D) medical image segmentation benchmarks and graph- and transformer-based segmentation models. The results demonstrate improved performance in abdominal and thorax organ and tumour segmentation tasks. Additionally, ablation studies show that the major technical innovations are effective and consistent when using different 3D medical image segmentation backbones.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QJQ完成签到 ,获得积分10
2秒前
2秒前
2秒前
4秒前
5秒前
山河故人完成签到 ,获得积分10
7秒前
Dakota发布了新的文献求助10
7秒前
meizi发布了新的文献求助10
7秒前
samar发布了新的文献求助10
8秒前
充电宝应助等等小ur采纳,获得10
11秒前
meizi完成签到,获得积分10
15秒前
马一凡发布了新的文献求助200
22秒前
24秒前
背后的鸭子完成签到 ,获得积分10
26秒前
Singularity应助Drwenlu采纳,获得20
27秒前
yuyuyu发布了新的文献求助10
29秒前
31秒前
34秒前
yuyuyu完成签到,获得积分10
34秒前
40秒前
咚咚完成签到,获得积分10
47秒前
MUSTer一一完成签到 ,获得积分10
47秒前
大个应助一秋一年采纳,获得10
49秒前
50秒前
潘老二完成签到,获得积分10
50秒前
文艺沛文发布了新的文献求助10
51秒前
123发布了新的文献求助10
56秒前
牛马发布了新的文献求助10
58秒前
59秒前
打打应助ptyz霍建华采纳,获得10
1分钟前
1分钟前
1分钟前
一秋一年发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
文艺沛文发布了新的文献求助10
1分钟前
医皛生发布了新的文献求助30
1分钟前
温馨家园完成签到 ,获得积分10
1分钟前
lu发布了新的文献求助10
1分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Pearson Edxecel IGCSE English Language B 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142377
求助须知:如何正确求助?哪些是违规求助? 2793285
关于积分的说明 7806265
捐赠科研通 2449541
什么是DOI,文献DOI怎么找? 1303349
科研通“疑难数据库(出版商)”最低求助积分说明 626823
版权声明 601300