Evolving graph convolutional network with transformer for CT segmentation

计算机科学 分割 人工智能 模式识别(心理学) 图像分割 图形 成对比较 理论计算机科学
作者
Hui Cui,Qiangguo Jin,Xixi Wu,Linlin Wang,Tiangang Zhang,Toshiya Nakaguchi,Ping Xuan,Dagan Feng
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:165: 112069-112069
标识
DOI:10.1016/j.asoc.2024.112069
摘要

Accurate and robust organ and tumour segmentation from CT scans are critical for precision diagnosis and prognosis of cancer and the development of personalised treatment planning. However, the automatic segmentation of tumours and organs they invade is challenging because of significant variations, abnormalities, and unclear boundaries. While graph convolutional networks can propagate knowledge and correlations in a flexible feature space, they suffer from information saturation during deep learning, limiting their effectiveness. To overcome this issue, we propose a hybrid graph convolution transformer (HCGT) model that consists of a channel transformer (CTrans) and a convolutional graph transformer (convG-Trans). CTrans operates along the feature channel dimension to learn contextual relationships across different feature channels. The convG-Trans learns enriched relationships among distinct elements within the image by concurrently and interactively aggregating knowledge propagation from graph convolution and cross-node similarities from the transformer. Finally, a category-level attention is designed to understand the significance of the two representations from the CTrans and convG-Trans, which help adjust the fusion process before generating the segmentation output. We evaluate the HCGT on kidney and kidney tumour, and lung and non-small cell lung cancer datasets. Our evaluations include comparisons with three-dimensional (3D) medical image segmentation benchmarks and graph- and transformer-based segmentation models. The results demonstrate improved performance in abdominal and thorax organ and tumour segmentation tasks. Additionally, ablation studies show that the major technical innovations are effective and consistent when using different 3D medical image segmentation backbones.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文静身边充满小确幸完成签到 ,获得积分10
刚刚
活泼白山完成签到 ,获得积分10
1秒前
1秒前
果力成完成签到,获得积分10
1秒前
zoeyang完成签到,获得积分20
2秒前
一粟的粉r发布了新的文献求助10
2秒前
思源应助阿金采纳,获得10
3秒前
3秒前
杨松发布了新的文献求助50
3秒前
3秒前
叶惠美发布了新的文献求助10
3秒前
4秒前
正直的仙人掌应助竞鹤采纳,获得10
4秒前
大模型应助郎吟上邪采纳,获得10
5秒前
5秒前
善学以致用应助King采纳,获得10
5秒前
万能图书馆应助卷卷采纳,获得10
6秒前
华仔应助细腻代真采纳,获得10
7秒前
有点IS发布了新的文献求助10
7秒前
7秒前
共享精神应助Lmmm采纳,获得10
7秒前
8秒前
橘子发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
9秒前
研友_VZG7GZ应助坚定晓兰采纳,获得10
10秒前
10秒前
Jasmine完成签到,获得积分10
10秒前
11秒前
CipherSage应助FMZ采纳,获得10
11秒前
12秒前
晏晏完成签到 ,获得积分10
12秒前
zzzz发布了新的文献求助10
12秒前
zhsy完成签到,获得积分10
12秒前
12秒前
尧九完成签到,获得积分10
13秒前
13秒前
13秒前
高分求助中
Incubation and Hatchery Performance, The Devil is in the Details 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5204680
求助须知:如何正确求助?哪些是违规求助? 4383701
关于积分的说明 13650154
捐赠科研通 4241580
什么是DOI,文献DOI怎么找? 2326956
邀请新用户注册赠送积分活动 1324605
关于科研通互助平台的介绍 1276907