Evolving graph convolutional network with transformer for CT segmentation

计算机科学 分割 人工智能 模式识别(心理学) 图像分割 图形 成对比较 理论计算机科学
作者
Hui Cui,Qiangguo Jin,Xixi Wu,Linlin Wang,Tiangang Zhang,Toshiya Nakaguchi,Ping Xuan,Dagan Feng
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:165: 112069-112069
标识
DOI:10.1016/j.asoc.2024.112069
摘要

Accurate and robust organ and tumour segmentation from CT scans are critical for precision diagnosis and prognosis of cancer and the development of personalised treatment planning. However, the automatic segmentation of tumours and organs they invade is challenging because of significant variations, abnormalities, and unclear boundaries. While graph convolutional networks can propagate knowledge and correlations in a flexible feature space, they suffer from information saturation during deep learning, limiting their effectiveness. To overcome this issue, we propose a hybrid graph convolution transformer (HCGT) model that consists of a channel transformer (CTrans) and a convolutional graph transformer (convG-Trans). CTrans operates along the feature channel dimension to learn contextual relationships across different feature channels. The convG-Trans learns enriched relationships among distinct elements within the image by concurrently and interactively aggregating knowledge propagation from graph convolution and cross-node similarities from the transformer. Finally, a category-level attention is designed to understand the significance of the two representations from the CTrans and convG-Trans, which help adjust the fusion process before generating the segmentation output. We evaluate the HCGT on kidney and kidney tumour, and lung and non-small cell lung cancer datasets. Our evaluations include comparisons with three-dimensional (3D) medical image segmentation benchmarks and graph- and transformer-based segmentation models. The results demonstrate improved performance in abdominal and thorax organ and tumour segmentation tasks. Additionally, ablation studies show that the major technical innovations are effective and consistent when using different 3D medical image segmentation backbones.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FIN应助小泽66689采纳,获得10
1秒前
酷酷犀牛完成签到,获得积分10
1秒前
Dr_Stars完成签到,获得积分10
1秒前
2秒前
cwx完成签到,获得积分10
2秒前
ymh完成签到,获得积分10
2秒前
陶醉的蜜蜂完成签到 ,获得积分10
2秒前
SYLH应助研友_8KAOBn采纳,获得10
2秒前
2秒前
华仔应助泡泡糖采纳,获得10
2秒前
szz完成签到,获得积分10
3秒前
阿兰吉约丹完成签到,获得积分20
3秒前
4秒前
YY发布了新的文献求助10
4秒前
5秒前
无限雨南发布了新的文献求助20
5秒前
5秒前
hugoidea发布了新的文献求助10
6秒前
6秒前
现实的迎夏完成签到 ,获得积分10
6秒前
6秒前
三七发布了新的文献求助10
7秒前
7秒前
CodeCraft应助YY采纳,获得10
8秒前
科研通AI2S应助LC2228采纳,获得10
8秒前
谷谷发布了新的文献求助10
8秒前
9秒前
KK完成签到 ,获得积分10
9秒前
9秒前
良辰美景完成签到 ,获得积分10
9秒前
邝边边完成签到,获得积分10
9秒前
wantmygo完成签到,获得积分10
10秒前
车大花发布了新的文献求助10
10秒前
你香发布了新的文献求助10
10秒前
11秒前
引子完成签到,获得积分10
11秒前
linkman发布了新的文献求助10
11秒前
脑洞疼应助开心采纳,获得10
12秒前
上官若男应助了了采纳,获得20
12秒前
小胖墩完成签到,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016497
求助须知:如何正确求助?哪些是违规求助? 3556675
关于积分的说明 11322036
捐赠科研通 3289416
什么是DOI,文献DOI怎么找? 1812458
邀请新用户注册赠送积分活动 888053
科研通“疑难数据库(出版商)”最低求助积分说明 812060