Evolving graph convolutional network with transformer for CT segmentation

计算机科学 分割 人工智能 模式识别(心理学) 图像分割 图形 成对比较 理论计算机科学
作者
Hui Cui,Qiangguo Jin,Xixi Wu,Linlin Wang,Tiangang Zhang,Toshiya Nakaguchi,Ping Xuan,Dagan Feng
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:165: 112069-112069
标识
DOI:10.1016/j.asoc.2024.112069
摘要

Accurate and robust organ and tumour segmentation from CT scans are critical for precision diagnosis and prognosis of cancer and the development of personalised treatment planning. However, the automatic segmentation of tumours and organs they invade is challenging because of significant variations, abnormalities, and unclear boundaries. While graph convolutional networks can propagate knowledge and correlations in a flexible feature space, they suffer from information saturation during deep learning, limiting their effectiveness. To overcome this issue, we propose a hybrid graph convolution transformer (HCGT) model that consists of a channel transformer (CTrans) and a convolutional graph transformer (convG-Trans). CTrans operates along the feature channel dimension to learn contextual relationships across different feature channels. The convG-Trans learns enriched relationships among distinct elements within the image by concurrently and interactively aggregating knowledge propagation from graph convolution and cross-node similarities from the transformer. Finally, a category-level attention is designed to understand the significance of the two representations from the CTrans and convG-Trans, which help adjust the fusion process before generating the segmentation output. We evaluate the HCGT on kidney and kidney tumour, and lung and non-small cell lung cancer datasets. Our evaluations include comparisons with three-dimensional (3D) medical image segmentation benchmarks and graph- and transformer-based segmentation models. The results demonstrate improved performance in abdominal and thorax organ and tumour segmentation tasks. Additionally, ablation studies show that the major technical innovations are effective and consistent when using different 3D medical image segmentation backbones.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
wanci应助Huang采纳,获得30
刚刚
小粥发布了新的文献求助10
1秒前
1秒前
杭紫雪发布了新的文献求助10
1秒前
陈宏伟完成签到,获得积分10
1秒前
爆米花应助唐九采纳,获得10
1秒前
Orange应助徐晚疯采纳,获得10
1秒前
1秒前
TheYNJ完成签到,获得积分10
2秒前
挽风风风风完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
啧啧啧啧完成签到,获得积分10
3秒前
3秒前
3秒前
爆米花应助大意的飞莲采纳,获得10
4秒前
4秒前
4秒前
CX发布了新的文献求助10
5秒前
Gaomengying发布了新的文献求助10
5秒前
zhuan发布了新的文献求助10
5秒前
5秒前
slby发布了新的文献求助10
6秒前
古城小街发布了新的文献求助10
6秒前
xixifu发布了新的文献求助10
6秒前
6秒前
jackycas完成签到,获得积分10
7秒前
wxy发布了新的文献求助10
7秒前
房山芙完成签到,获得积分10
7秒前
tanuki发布了新的文献求助10
8秒前
8秒前
Jiali发布了新的文献求助10
8秒前
8秒前
顾矜应助文文文采纳,获得10
9秒前
9秒前
高分求助中
美国药典 2000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5238818
求助须知:如何正确求助?哪些是违规求助? 4406474
关于积分的说明 13714044
捐赠科研通 4274861
什么是DOI,文献DOI怎么找? 2345780
邀请新用户注册赠送积分活动 1342825
关于科研通互助平台的介绍 1300786