角膜塑形术
镜头(地质)
背景(考古学)
散光
人工神经网络
曲率
角膜地形图
验光服务
光功率
临床实习
计算机科学
人工智能
光学
数学
眼科
角膜
医学
物理
地质学
几何学
古生物学
激光器
家庭医学
作者
Hsiu‐Wan Wendy Yang,Chih‐Kai Leon Liang,Shih‐Chi Chou,Hsin‐Hui Wang,Huihua Kenny Chiang
摘要
Abstract Purpose To optimise the precision and efficacy of orthokeratology, this investigation evaluated a deep neural network (DNN) model for lens fitting. The objective was to refine the standardisation of fitting procedures and curtail subjective evaluations, thereby augmenting patient safety in the context of increasing global myopia. Methods A retrospective study of successful orthokeratology treatment was conducted on 266 patients, with 449 eyes being analysed. A DNN model with an 80%–20% training‐validation split predicted lens parameters (curvature, power and diameter) using corneal topography and refractive indices. The model featured two hidden layers for precision. Results The DNN model achieved mean absolute errors of 0.21 D for alignment curvature (AC), 0.19 D for target power (TP) and 0.02 mm for lens diameter (LD), with R 2 values of 0.97, 0.95 and 0.91, respectively. Accuracy decreased for myopia of less than 1.00 D, astigmatism exceeding 2.00 D and corneal curvatures >45.00 D. Approximately, 2% of cases with unique physiological characteristics showed notable prediction variances. Conclusion While exhibiting high accuracy, the DNN model's limitations in specifying myopia, cylinder power and corneal curvature cases highlight the need for algorithmic refinement and clinical validation in orthokeratology practice.
科研通智能强力驱动
Strongly Powered by AbleSci AI