Predicting Late Gadolinium Enhancement of Acute Myocardial Infarction in Contrast-Free Cardiac Cine MRI Using Deep Generative Learning

医学 心肌梗塞 磁共振成像 对比度(视觉) 心脏病学 心脏磁共振 对比度增强 内科学 放射科 人工智能 计算机科学 冶金 材料科学
作者
Haikun Qi,Pengfang Qian,Langlang Tang,Binghua Chen,Dong‐Aolei An,Lian-Ming Wu
出处
期刊:Circulation-cardiovascular Imaging [Ovid Technologies (Wolters Kluwer)]
被引量:3
标识
DOI:10.1161/circimaging.124.016786
摘要

BACKGROUND: Late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) is a standard technique for diagnosing myocardial infarction (MI), which, however, poses risks due to gadolinium contrast usage. Techniques enabling MI assessment based on contrast-free CMR are desirable to overcome the limitations associated with contrast enhancement. METHODS: We introduce a novel deep generative learning method, termed cine-generated enhancement (CGE), which transforms standard contrast-free cine CMR into LGE-equivalent images for MI assessment. CGE features with multislice spatiotemporal feature extractor, enhancement contrast modulation, and sophisticated loss function. Data from 430 patients with acute MI from 3 centers were collected. After image quality control, 1525 pairs (289 patients) of center I were used for training, and 293 slices (52 patients) of the same center were reserved for internal testing. The 40 patients (401 slices) of the other 2 centers were used for external testing. The CGE robustness was further tested in 20 normal subjects in a public cine CMR data set. CGE images were compared with LGE for image quality assessment and MI quantification regarding scar size and transmurality. RESULTS: The CGE method produced images of superior quality to LGE in both internal and external data sets. There was a significant ( P <0.001) correlation between CGE and LGE measurements of scar size (Pearson correlation, 0.79/0.80; intraclass correlation coefficient, 0.79/0.77) and transmurality (Pearson correlation, 0.76/0.64; intraclass correlation coefficient, 0.76/0.63) in internal/external data set. Considering all data sets, CGE demonstrated high sensitivity (91.27%) and specificity (95.83%) in detecting scars. Realistic enhancement images were obtained for the normal subjects in the public data set without false positive subjects. CONCLUSIONS: CGE achieved superior image quality to LGE and accurate scar delineation in patients with acute MI of both internal and external data sets. CGE can significantly simplify the CMR examination, reducing scan times and risks associated with gadolinium-based contrasts, which are crucial for acute patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
共享精神应助TYF采纳,获得10
2秒前
2秒前
洪豆豆完成签到,获得积分10
3秒前
4秒前
kejun发布了新的文献求助30
5秒前
Kelsey完成签到 ,获得积分10
7秒前
哈哈哈发布了新的文献求助10
7秒前
7秒前
辛勤凝丝发布了新的文献求助10
8秒前
wssamuel完成签到 ,获得积分10
9秒前
zzzzz完成签到,获得积分10
9秒前
9秒前
水穷云起完成签到,获得积分10
9秒前
9秒前
科研通AI6应助YE采纳,获得10
12秒前
赘婿应助杜小宝采纳,获得10
13秒前
府于杰发布了新的文献求助10
14秒前
TYF发布了新的文献求助10
14秒前
cpl完成签到,获得积分20
14秒前
落后的难胜完成签到 ,获得积分10
15秒前
陈肖楠完成签到,获得积分10
15秒前
qsmei2020发布了新的文献求助10
16秒前
16秒前
梁正凤发布了新的文献求助10
17秒前
夜琉璃应助辛勤凝丝采纳,获得10
17秒前
夜包子123完成签到,获得积分10
18秒前
乐此不疲的猪完成签到,获得积分10
18秒前
WGS发布了新的文献求助10
20秒前
Ava应助哈哈哈采纳,获得10
20秒前
23秒前
中国大陆完成签到,获得积分10
23秒前
洋子完成签到 ,获得积分10
25秒前
27秒前
娜娜子完成签到 ,获得积分10
27秒前
Lucas应助JIANG0710采纳,获得10
28秒前
踏实亦玉完成签到 ,获得积分20
30秒前
暴躁的念之完成签到 ,获得积分10
31秒前
灵巧蓉完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565407
求助须知:如何正确求助?哪些是违规求助? 4650389
关于积分的说明 14691103
捐赠科研通 4592283
什么是DOI,文献DOI怎么找? 2519578
邀请新用户注册赠送积分活动 1491994
关于科研通互助平台的介绍 1463199