Predicting Late Gadolinium Enhancement of Acute Myocardial Infarction in Contrast-Free Cardiac Cine MRI Using Deep Generative Learning

医学 心肌梗塞 磁共振成像 对比度(视觉) 心脏病学 心脏磁共振 对比度增强 内科学 放射科 人工智能 计算机科学 冶金 材料科学
作者
Haikun Qi,Pengfang Qian,Langlang Tang,Binghua Chen,Dong‐Aolei An,Lian-Ming Wu
出处
期刊:Circulation-cardiovascular Imaging [Lippincott Williams & Wilkins]
被引量:3
标识
DOI:10.1161/circimaging.124.016786
摘要

BACKGROUND: Late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) is a standard technique for diagnosing myocardial infarction (MI), which, however, poses risks due to gadolinium contrast usage. Techniques enabling MI assessment based on contrast-free CMR are desirable to overcome the limitations associated with contrast enhancement. METHODS: We introduce a novel deep generative learning method, termed cine-generated enhancement (CGE), which transforms standard contrast-free cine CMR into LGE-equivalent images for MI assessment. CGE features with multislice spatiotemporal feature extractor, enhancement contrast modulation, and sophisticated loss function. Data from 430 patients with acute MI from 3 centers were collected. After image quality control, 1525 pairs (289 patients) of center I were used for training, and 293 slices (52 patients) of the same center were reserved for internal testing. The 40 patients (401 slices) of the other 2 centers were used for external testing. The CGE robustness was further tested in 20 normal subjects in a public cine CMR data set. CGE images were compared with LGE for image quality assessment and MI quantification regarding scar size and transmurality. RESULTS: The CGE method produced images of superior quality to LGE in both internal and external data sets. There was a significant ( P <0.001) correlation between CGE and LGE measurements of scar size (Pearson correlation, 0.79/0.80; intraclass correlation coefficient, 0.79/0.77) and transmurality (Pearson correlation, 0.76/0.64; intraclass correlation coefficient, 0.76/0.63) in internal/external data set. Considering all data sets, CGE demonstrated high sensitivity (91.27%) and specificity (95.83%) in detecting scars. Realistic enhancement images were obtained for the normal subjects in the public data set without false positive subjects. CONCLUSIONS: CGE achieved superior image quality to LGE and accurate scar delineation in patients with acute MI of both internal and external data sets. CGE can significantly simplify the CMR examination, reducing scan times and risks associated with gadolinium-based contrasts, which are crucial for acute patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
胡宇完成签到,获得积分10
刚刚
emchavezangel发布了新的文献求助10
刚刚
郑一鸣完成签到,获得积分10
1秒前
小海绵发布了新的文献求助10
1秒前
1秒前
许卡号完成签到,获得积分20
1秒前
鱼大大发布了新的文献求助10
2秒前
zhengguibin完成签到 ,获得积分10
2秒前
3秒前
弱水给lin的求助进行了留言
3秒前
云竹丶发布了新的文献求助10
3秒前
3秒前
孔维艺发布了新的文献求助10
3秒前
4秒前
4秒前
Atlantis发布了新的文献求助10
4秒前
年糕菌发布了新的文献求助10
5秒前
Sunyujie完成签到,获得积分10
5秒前
一只草履虫完成签到,获得积分20
5秒前
朴实寻雪发布了新的文献求助10
5秒前
乖张发布了新的文献求助10
5秒前
鳈sir发布了新的文献求助10
6秒前
mingjing完成签到,获得积分10
6秒前
宽宽发布了新的文献求助10
6秒前
6秒前
顾矜应助许卡号采纳,获得10
7秒前
XXX完成签到,获得积分10
7秒前
zjujirenjie发布了新的文献求助10
7秒前
yy完成签到,获得积分10
7秒前
兴奋赛君完成签到,获得积分10
7秒前
阳阳完成签到,获得积分10
7秒前
懵懂的芫发布了新的文献求助10
7秒前
8秒前
香蕉觅云应助张晓林采纳,获得30
8秒前
勤恳的糖豆完成签到,获得积分10
8秒前
8秒前
pcb完成签到,获得积分10
8秒前
斯文墨镜发布了新的文献求助10
9秒前
emchavezangel完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2025山东省直机关硬笔书法展示活动获奖名单 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4939204
求助须知:如何正确求助?哪些是违规求助? 4205734
关于积分的说明 13071023
捐赠科研通 3983950
什么是DOI,文献DOI怎么找? 2181431
邀请新用户注册赠送积分活动 1197285
关于科研通互助平台的介绍 1109458