Predicting Late Gadolinium Enhancement of Acute Myocardial Infarction in Contrast-Free Cardiac Cine MRI Using Deep Generative Learning

医学 心肌梗塞 磁共振成像 对比度(视觉) 心脏病学 心脏磁共振 对比度增强 内科学 放射科 人工智能 计算机科学 冶金 材料科学
作者
Haikun Qi,Pengfang Qian,Langlang Tang,Binghua Chen,Dong‐Aolei An,Lian-Ming Wu
出处
期刊:Circulation-cardiovascular Imaging [Ovid Technologies (Wolters Kluwer)]
被引量:3
标识
DOI:10.1161/circimaging.124.016786
摘要

BACKGROUND: Late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) is a standard technique for diagnosing myocardial infarction (MI), which, however, poses risks due to gadolinium contrast usage. Techniques enabling MI assessment based on contrast-free CMR are desirable to overcome the limitations associated with contrast enhancement. METHODS: We introduce a novel deep generative learning method, termed cine-generated enhancement (CGE), which transforms standard contrast-free cine CMR into LGE-equivalent images for MI assessment. CGE features with multislice spatiotemporal feature extractor, enhancement contrast modulation, and sophisticated loss function. Data from 430 patients with acute MI from 3 centers were collected. After image quality control, 1525 pairs (289 patients) of center I were used for training, and 293 slices (52 patients) of the same center were reserved for internal testing. The 40 patients (401 slices) of the other 2 centers were used for external testing. The CGE robustness was further tested in 20 normal subjects in a public cine CMR data set. CGE images were compared with LGE for image quality assessment and MI quantification regarding scar size and transmurality. RESULTS: The CGE method produced images of superior quality to LGE in both internal and external data sets. There was a significant ( P <0.001) correlation between CGE and LGE measurements of scar size (Pearson correlation, 0.79/0.80; intraclass correlation coefficient, 0.79/0.77) and transmurality (Pearson correlation, 0.76/0.64; intraclass correlation coefficient, 0.76/0.63) in internal/external data set. Considering all data sets, CGE demonstrated high sensitivity (91.27%) and specificity (95.83%) in detecting scars. Realistic enhancement images were obtained for the normal subjects in the public data set without false positive subjects. CONCLUSIONS: CGE achieved superior image quality to LGE and accurate scar delineation in patients with acute MI of both internal and external data sets. CGE can significantly simplify the CMR examination, reducing scan times and risks associated with gadolinium-based contrasts, which are crucial for acute patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
vin完成签到,获得积分20
3秒前
科研通AI6.1应助yayazhang采纳,获得10
4秒前
南有乔木完成签到,获得积分20
5秒前
六六发布了新的文献求助10
5秒前
研途者完成签到,获得积分10
5秒前
7喜完成签到,获得积分10
5秒前
白开水完成签到 ,获得积分10
9秒前
www关闭了www文献求助
9秒前
annulenes应助华华是川川采纳,获得20
9秒前
科研通AI6.1应助淡定青丝采纳,获得10
10秒前
1234完成签到 ,获得积分10
10秒前
10秒前
领导范儿应助jessica采纳,获得10
12秒前
12秒前
15秒前
15秒前
TitoLi发布了新的文献求助10
16秒前
emoji发布了新的文献求助10
16秒前
16秒前
薏米人儿完成签到 ,获得积分10
16秒前
16秒前
虚幻无颜完成签到 ,获得积分10
17秒前
六六完成签到,获得积分10
17秒前
19秒前
平淡思雁完成签到,获得积分10
19秒前
20秒前
雨上悲发布了新的文献求助10
20秒前
科研通AI6.1应助小汁儿采纳,获得10
20秒前
21秒前
忐忑的书桃完成签到 ,获得积分10
21秒前
猪猪hero发布了新的文献求助10
21秒前
22秒前
流沙发布了新的文献求助10
22秒前
i喝凉白开完成签到 ,获得积分10
22秒前
23秒前
6666应助读书的时候采纳,获得10
24秒前
阿腾发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
25秒前
tiou发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735261
求助须知:如何正确求助?哪些是违规求助? 5359491
关于积分的说明 15329099
捐赠科研通 4879515
什么是DOI,文献DOI怎么找? 2622039
邀请新用户注册赠送积分活动 1571201
关于科研通互助平台的介绍 1528011