A conditional protein diffusion model generates artificial programmable endonuclease sequences with enhanced activity

计算生物学 火球菌属 生物信息学 蛋白质工程 合成生物学 蛋白质设计 定向进化 蛋白质结构域 生物 蛋白质结构 计算机科学 生物化学 基因 突变体 古细菌
作者
Bingxin Zhou,Lirong Zheng,Banghao Wu,Kai Yi,Bozitao Zhong,Yang Tan,Qian Liu,Píetro Lió,Liang Hong
出处
期刊:Cell discovery [Springer Nature]
卷期号:10 (1)
标识
DOI:10.1038/s41421-024-00728-2
摘要

Abstract Deep learning-based methods for generating functional proteins address the growing need for novel biocatalysts, allowing for precise tailoring of functionalities to meet specific requirements. This advancement leads to the development of highly efficient and specialized proteins with diverse applications across scientific, technological, and biomedical fields. This study establishes a pipeline for protein sequence generation with a conditional protein diffusion model, namely CPDiffusion, to create diverse sequences of proteins with enhanced functions. CPDiffusion accommodates protein-specific conditions, such as secondary structures and highly conserved amino acids. Without relying on extensive training data, CPDiffusion effectively captures highly conserved residues and sequence features for specific protein families. We applied CPDiffusion to generate artificial sequences of Argonaute (Ago) proteins based on the backbone structures of wild-type (WT) Kurthia massiliensis Ago (KmAgo) and Pyrococcus furiosus Ago (PfAgo), which are complex multi-domain programmable endonucleases. The generated sequences deviate by up to nearly 400 amino acids from their WT templates. Experimental tests demonstrated that the majority of the generated proteins for both KmAgo and PfAgo show unambiguous activity in DNA cleavage, with many of them exhibiting superior activity as compared to the WT. These findings underscore CPDiffusion’s remarkable success rate in generating novel sequences for proteins with complex structures and functions in a single step, leading to enhanced activity. This approach facilitates the design of enzymes with multi-domain molecular structures and intricate functions through in silico generation and screening, all accomplished without the need for supervision from labeled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助林林采纳,获得10
1秒前
周宇飞完成签到 ,获得积分10
2秒前
3秒前
一一应助啦啦啦采纳,获得10
3秒前
3秒前
动听乐萱发布了新的文献求助10
3秒前
Osii完成签到,获得积分10
3秒前
甜甜玫瑰应助Wwhy采纳,获得10
3秒前
良辰应助Wwhy采纳,获得10
3秒前
阿盛发布了新的文献求助10
4秒前
gd发布了新的文献求助10
6秒前
张不高完成签到,获得积分20
7秒前
sjsjjj发布了新的文献求助10
7秒前
眉姐姐的藕粉桂花糖糕完成签到 ,获得积分10
7秒前
zino发布了新的文献求助10
7秒前
SciGPT应助nulinuli采纳,获得10
8秒前
8秒前
认真的画板完成签到,获得积分10
8秒前
8秒前
情怀应助勤奋以蓝采纳,获得10
9秒前
所所应助橙豆儿采纳,获得10
9秒前
Owen应助简单的丑采纳,获得10
11秒前
ls完成签到,获得积分10
12秒前
12秒前
动听乐萱完成签到,获得积分10
12秒前
雪山发布了新的文献求助10
12秒前
12秒前
ydz关闭了ydz文献求助
13秒前
哈哈哈哈哈完成签到,获得积分10
13秒前
榆木小鸟完成签到 ,获得积分10
13秒前
元问晴完成签到,获得积分10
14秒前
啦啦啦完成签到,获得积分10
14秒前
16秒前
小王完成签到,获得积分10
17秒前
冷傲的无极完成签到,获得积分10
17秒前
等风来、云飞扬完成签到,获得积分10
17秒前
任性土豆发布了新的文献求助10
17秒前
18秒前
19秒前
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292613
求助须知:如何正确求助?哪些是违规求助? 2928961
关于积分的说明 8439121
捐赠科研通 2601004
什么是DOI,文献DOI怎么找? 1419422
科研通“疑难数据库(出版商)”最低求助积分说明 660298
邀请新用户注册赠送积分活动 642931