亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Mechanism of the Terahertz Wave–MXene Interaction and Surface/Interface Chemistry of MXene for Terahertz Absorption and Shielding

太赫兹辐射 电磁屏蔽 吸收(声学) 机制(生物学) 化学 接口(物质) 太赫兹超材料 光电子学 屏蔽效应 材料科学 光学 分子 复合材料 有机化学 物理 远红外激光器 量子力学 吉布斯等温线 激光器
作者
Tao Zhao,Hujie Wan,Tianze Zhang,Xu Xiao
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:57 (15): 2184-2193 被引量:13
标识
DOI:10.1021/acs.accounts.4c00326
摘要

ConspectusOver the past two decades, terahertz (THz) technology has undergone rapid development, driven by advancements and the growing demand for THz applications across various scientific and technological domains. As the cornerstone of THz technology, strong THz-matter interactions, especially realized as high THz intrinsic absorption in nanometer-thick materials, play a highly important role in various applications including but not limited to THz absorption/shielding, detection, etc. The rigorous electromagnetic theory has posited a maximum intrinsic absorption of 50% for electromagnetic waves by thin films, and the succinct impedance matching condition has also been formulated to guide the design of highly intrinsically absorbing materials. However, these theories face challenges when applied to the THz spectrum with an ultrabroad bandwidth. Existing thin films typically achieve a maximum intrinsic absorption within a narrow frequency range, significantly limiting the performance of THz absorbers and detectors. To date, both theoretical frameworks and experimental solutions are lacking in overcoming the challenge of achieving broadband maximum intrinsic absorption in the THz regime.In this Account, we describe how two-dimensional (2D) transition-metal carbide and/or nitride (MXene) films with nanometer thickness can realize the maximum intrinsic absorption in the ultrabroad THz band, which successfully addresses the forementioned longstanding issue. Surprisingly, traditional DC impedance matching theory fails to explain this phenomenon, while we instead propose a novel theory of AC impedance matching to provide a satisfactory explanation. By delving into the microscopic transport behavior of free electrons in MXene, we discover that intraflake transport dominates terahertz conductivity under THz wave excitation, while interflake transport primarily dictates DC conductivity. This not only elucidates the significant disparities between DC and AC impedance in MXenes but also underscores the suitability of AC impedance matching for achieving broadband THz absorption limits. Furthermore, we identify a high electron concentration and short relaxation time as crucial factors for achieving broadband maximum absorption in the THz regime. Although approaching the THz intrinsic absorbing limits, it still faces hurdles to the use of MXene in practical applications. First, diverse and uncontrollable terminations exist on the surface of MXene stemming from the synthesis process, which largely influence the electron structure and THz absorbing property of MXene. Second, MXene suffers from poor stability in the presence of oxygen and water. To address the above issues, we have undertaken distinctive works to precisely control the terminations and suppress the oxidation of MXene even at high temperature through surface and interface chemistry, such as low-temperature Lewis basic halide treatment and building a Ti3C2Tx/extracted bentonite (EB) interface. For practical application consideration, we proposed a copolymer-polyacrylic latex (PAL)-based MXene waterborne paint (MWP) with a strong intermolecular polar interaction between MWP and the substrate provided by the cyano group in PAL. This not only has strong THz EMI shielding/absorption efficiency but also can easily adhere to various substrates that are commonly used in the THz band. These studies may have significant implications for future applications of MXene nanofilms in THz optoelectronic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
27秒前
量子星尘发布了新的文献求助10
30秒前
田様应助郭楠楠采纳,获得30
33秒前
1分钟前
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
郭楠楠发布了新的文献求助30
1分钟前
1分钟前
Xyyy完成签到,获得积分10
1分钟前
RED发布了新的文献求助10
1分钟前
满天星发布了新的文献求助10
1分钟前
2分钟前
郭楠楠发布了新的文献求助10
2分钟前
缨绒完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
满天星完成签到 ,获得积分10
3分钟前
zqr发布了新的文献求助10
3分钟前
Hello应助Raunio采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
abdo完成签到,获得积分10
3分钟前
kuoping完成签到,获得积分0
3分钟前
小蘑菇应助成太采纳,获得10
4分钟前
万能图书馆应助zxl采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
郭楠楠发布了新的文献求助10
4分钟前
4分钟前
清泉发布了新的文献求助10
4分钟前
4分钟前
成太发布了新的文献求助10
4分钟前
zxl发布了新的文献求助10
4分钟前
CodeCraft应助郭楠楠采纳,获得10
4分钟前
4分钟前
郭楠楠发布了新的文献求助10
5分钟前
5分钟前
5分钟前
5分钟前
付辛博boo完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664438
求助须知:如何正确求助?哪些是违规求助? 4861169
关于积分的说明 15107642
捐赠科研通 4822995
什么是DOI,文献DOI怎么找? 2581824
邀请新用户注册赠送积分活动 1536001
关于科研通互助平台的介绍 1494359