亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Research on the Method of Foreign Object Detection for Railway Tracks Based on Deep Learning

人工智能 深度学习 计算机科学 目标检测 计算机视觉 对象(语法) 工程类 模式识别(心理学)
作者
Shanping Ning,Feng Ding,Bangbang Chen
出处
期刊:Sensors [MDPI AG]
卷期号:24 (14): 4483-4483
标识
DOI:10.3390/s24144483
摘要

Addressing the limitations of current railway track foreign object detection techniques, which suffer from inadequate real-time performance and diminished accuracy in detecting small objects, this paper introduces an innovative vision-based perception methodology harnessing the power of deep learning. Central to this approach is the construction of a railway boundary model utilizing a sophisticated track detection method, along with an enhanced UNet semantic segmentation network to achieve autonomous segmentation of diverse track categories. By employing equal interval division and row-by-row traversal, critical track feature points are precisely extracted, and the track linear equation is derived through the least squares method, thus establishing an accurate railway boundary model. We optimized the YOLOv5s detection model in four aspects: incorporating the SE attention mechanism into the Neck network layer to enhance the model’s feature extraction capabilities, adding a prediction layer to improve the detection performance for small objects, proposing a linear size scaling method to obtain suitable anchor boxes, and utilizing Inner-IoU to refine the boundary regression loss function, thereby increasing the positioning accuracy of the bounding boxes. We conducted a detection accuracy validation for railway track foreign object intrusion using a self-constructed image dataset. The results indicate that the proposed semantic segmentation model achieved an MIoU of 91.8%, representing a 3.9% improvement over the previous model, effectively segmenting railway tracks. Additionally, the optimized detection model could effectively detect foreign object intrusions on the tracks, reducing missed and false alarms and achieving a 7.4% increase in the mean average precision (IoU = 0.5) compared to the original YOLOv5s model. The model exhibits strong generalization capabilities in scenarios involving small objects. This proposed approach represents an effective exploration of deep learning techniques for railway track foreign object intrusion detection, suitable for use in complex environments to ensure the operational safety of rail lines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xu完成签到,获得积分10
7秒前
FashionBoy应助duanduan123采纳,获得10
8秒前
Perion完成签到 ,获得积分10
21秒前
36秒前
程风破浪发布了新的文献求助30
41秒前
bkagyin应助starry采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
华仔应助巫马小霜采纳,获得10
1分钟前
tuanheqi完成签到,获得积分0
1分钟前
1分钟前
1分钟前
巫马小霜发布了新的文献求助10
1分钟前
程风破浪发布了新的文献求助10
1分钟前
科研那些年完成签到,获得积分10
1分钟前
1分钟前
花花521发布了新的文献求助20
1分钟前
1分钟前
1分钟前
1分钟前
duanduan123发布了新的文献求助10
1分钟前
starry发布了新的文献求助10
2分钟前
乐乐应助duanduan123采纳,获得10
2分钟前
2分钟前
yyllcc完成签到 ,获得积分10
2分钟前
日常搬砖发布了新的文献求助10
2分钟前
2分钟前
Akim应助日常搬砖采纳,获得10
2分钟前
YifanWang应助yyllcc采纳,获得10
2分钟前
Panther完成签到,获得积分10
2分钟前
冷淡芝麻完成签到 ,获得积分10
2分钟前
2分钟前
连衣裙完成签到 ,获得积分20
3分钟前
Hayat应助科研通管家采纳,获得10
3分钟前
3分钟前
ZXD1989完成签到 ,获得积分10
3分钟前
某人二号完成签到,获得积分0
3分钟前
暗号完成签到 ,获得积分10
3分钟前
饱满跳跳糖完成签到,获得积分10
3分钟前
3分钟前
慕斯完成签到,获得积分10
3分钟前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3130137
求助须知:如何正确求助?哪些是违规求助? 2780920
关于积分的说明 7750401
捐赠科研通 2436101
什么是DOI,文献DOI怎么找? 1294543
科研通“疑难数据库(出版商)”最低求助积分说明 623716
版权声明 600570