Engineering the Active Layer of Lead-Free Perovskite (CH3NH3SnI3) Solar Cells Using Numerical Simulation

钙钛矿(结构) SNi公司 材料科学 铅(地质) 图层(电子) 纳米技术 结晶学 化学 地质学 有机化学 地貌学 水解 酸水解
作者
Sarita Yadav,Saral K. Gupta,Chandra Mohan Singh Negi
出处
期刊:Physica Scripta [IOP Publishing]
标识
DOI:10.1088/1402-4896/ad621b
摘要

Abstract We conduct a thorough numerical simulation to examine the impact of the thickness, defect density, and doping density of the active layer on the photovoltaic performance of the lead-free CH 3 NH 3 SnI 3 perovskite solar cell (PSC). We observe that increasing the thickness of the active layer initially from 100 nm to 400 nm improved the power conversion efficiency (PCE) from 10.4% to 11.6%. However, further increasing the thickness to 800 nm resulted in a slight decline in PCE to 11.1%. This unexpected trend can be attributed to the high carrier mobility of charges in the CH 3 NH 3 SnI 3 perovskite, which enables fast extraction of charge carriers, offsetting losses due to charge recombination. Increasing active layer trap density substantially declines the PCE from 11.5% at 1014 cm -3 to 7.5% at 1018 cm -3 , as a result of the noticeable drop in open-circuit voltage (VOC) and fill factor (FF) with a growing defect density due to the enhancement in trap-assisted recombination. This is backed by a striking reduction in the shunt resistance upon increasing the defect density. Raising the active layer doping firstly enhances the PCE, reaching a peak value of 12.5% at the active layer doping density of 1017 cm-3, after which the PCE decreases as the doping density continues to increase. We explain these observations by energy level diagrams deduced at various doping levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mm关注了科研通微信公众号
刚刚
xieyuanxing发布了新的文献求助10
刚刚
刚刚
左然然完成签到,获得积分10
刚刚
刚刚
人福药业完成签到,获得积分10
1秒前
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
细腻晓露发布了新的文献求助10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
1秒前
三里墩头应助科研通管家采纳,获得10
1秒前
天线宝宝应助科研通管家采纳,获得10
1秒前
wing00024完成签到,获得积分10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
1秒前
小马甲应助科研通管家采纳,获得10
2秒前
控制小弟应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
Leif应助科研通管家采纳,获得20
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
prosperp应助科研通管家采纳,获得10
2秒前
烟雨行舟发布了新的文献求助10
3秒前
燕尔蓝完成签到,获得积分10
3秒前
3秒前
3秒前
Ll发布了新的文献求助10
4秒前
4秒前
Sprite666完成签到,获得积分10
4秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740