CCTA-Derived Fat Attenuation Index Predict Future Percutaneous Coronary Intervention

血运重建 医学 内科学 经皮 经皮冠状动脉介入治疗 心脏病学 前瞻性队列研究 析因分析 放射科 心肌梗塞
作者
Wei He,Yige Lu,Jiasheng Yin,Furong He,Yaoyi Zhang,Guanyu Qiao,Jingyang Luan,Zhifeng Yao,Chenguang Li,Shan Yang,Shihai Zhao,Liguo Shen,Weifeng Guo,Mengsu Zeng
出处
期刊:British Journal of Radiology [Wiley]
卷期号:97 (1163): 1782-1790 被引量:2
标识
DOI:10.1093/bjr/tqae135
摘要

Abstract Objectives This study aims to investigate the differences in plaque characteristics and fat attenuation index (FAI) between in patients who received revascularization versus those who did not receive revascularization and examine whether the machine learning (ML)-based model constructed by plaque characteristics and FAI can predict revascularization. Methods This study was a post hoc analysis of a prospective single-centre registry of sequential patients undergoing coronary computed tomography angiography, referred from inpatient and emergency department settings (n = 261, 63 years ± 8; 188 men). The primary outcome was revascularization by percutaneous coronary revascularization. The computed tomography angiography (CTA) images were analysed by experienced radiologists using a dedicated workstation in a blinded fashion. The ML-based model was automatically computed. Results The study cohort consisted of 261 subjects. Revascularization was performed in 105 subjects. Patients receiving revascularization had higher FAI value (67.35 ± 5.49 vs −80.10 ± 7.75 Hu, P < .001) as well as higher plaque length, calcified, lipid, and fibrous plaque burden and volume. When FAI was incorporated into an ML risk model based on plaque characteristics to predict revascularization, the area under the curve increased from 0.84 (95% CI, 0.68-0.99) to 0.95 (95% CI, 0.88-1.00). Conclusions ML algorithms based on FAI and characteristics could help improve the prediction of future revascularization and identify patients likely to receive revascularization. Advances in knowledge Pre-procedural FAI could help guide revascularization in symptomatic coronary artery disease patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
seven完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
3秒前
haha完成签到,获得积分10
4秒前
4秒前
学无止境发布了新的文献求助30
7秒前
大个应助無期采纳,获得10
7秒前
豆子发布了新的文献求助10
9秒前
10秒前
大胡子完成签到 ,获得积分10
12秒前
12秒前
聪明凌柏发布了新的文献求助10
16秒前
学无止境完成签到,获得积分0
17秒前
18秒前
hihi发布了新的文献求助10
18秒前
Lucas应助CKJ采纳,获得10
19秒前
21秒前
無期发布了新的文献求助10
22秒前
bkagyin应助科研小白采纳,获得30
23秒前
华仔应助suzy-123采纳,获得10
24秒前
25秒前
wty发布了新的文献求助10
28秒前
30秒前
AllenXia发布了新的文献求助30
30秒前
31秒前
科研通AI5应助皇甫瑾瑜采纳,获得30
31秒前
大模型应助钱博采纳,获得10
32秒前
小二郎应助無期采纳,获得10
33秒前
标致小翠发布了新的文献求助10
36秒前
janice发布了新的文献求助10
36秒前
共享精神应助卞威振采纳,获得10
37秒前
wty完成签到,获得积分20
38秒前
38秒前
39秒前
机灵的小蘑菇完成签到 ,获得积分10
41秒前
42秒前
AllenXia完成签到,获得积分10
43秒前
43秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735888
求助须知:如何正确求助?哪些是违规求助? 3279592
关于积分的说明 10016230
捐赠科研通 2996269
什么是DOI,文献DOI怎么找? 1644011
邀请新用户注册赠送积分活动 781681
科研通“疑难数据库(出版商)”最低求助积分说明 749425