CCTA-Derived Fat Attenuation Index Predict Future Percutaneous Coronary Intervention

血运重建 医学 内科学 经皮 经皮冠状动脉介入治疗 心脏病学 前瞻性队列研究 析因分析 放射科 心肌梗塞
作者
Wei He,Yige Lu,Jiasheng Yin,Furong He,Yaoyi Zhang,Guanyu Qiao,Jingyang Luan,Zhifeng Yao,Chenguang Li,Shan Yang,Shihai Zhao,Liguo Shen,Weifeng Guo,Mengsu Zeng
出处
期刊:British Journal of Radiology [British Institute of Radiology]
卷期号:97 (1163): 1782-1790 被引量:2
标识
DOI:10.1093/bjr/tqae135
摘要

Abstract Objectives This study aims to investigate the differences in plaque characteristics and fat attenuation index (FAI) between in patients who received revascularization versus those who did not receive revascularization and examine whether the machine learning (ML)-based model constructed by plaque characteristics and FAI can predict revascularization. Methods This study was a post hoc analysis of a prospective single-centre registry of sequential patients undergoing coronary computed tomography angiography, referred from inpatient and emergency department settings (n = 261, 63 years ± 8; 188 men). The primary outcome was revascularization by percutaneous coronary revascularization. The computed tomography angiography (CTA) images were analysed by experienced radiologists using a dedicated workstation in a blinded fashion. The ML-based model was automatically computed. Results The study cohort consisted of 261 subjects. Revascularization was performed in 105 subjects. Patients receiving revascularization had higher FAI value (67.35 ± 5.49 vs −80.10 ± 7.75 Hu, P < .001) as well as higher plaque length, calcified, lipid, and fibrous plaque burden and volume. When FAI was incorporated into an ML risk model based on plaque characteristics to predict revascularization, the area under the curve increased from 0.84 (95% CI, 0.68-0.99) to 0.95 (95% CI, 0.88-1.00). Conclusions ML algorithms based on FAI and characteristics could help improve the prediction of future revascularization and identify patients likely to receive revascularization. Advances in knowledge Pre-procedural FAI could help guide revascularization in symptomatic coronary artery disease patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhouzhou打工人完成签到,获得积分10
1秒前
yyx发布了新的文献求助10
2秒前
无名老大应助zz采纳,获得20
2秒前
传奇3应助daisy采纳,获得10
4秒前
千里江山一只蝇完成签到,获得积分10
4秒前
深情安青应助一路硕博采纳,获得10
6秒前
9秒前
11秒前
presumme发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
英姑应助shanbaibai采纳,获得100
14秒前
15秒前
孙文昭完成签到,获得积分10
16秒前
Orange应助Nick爱学习采纳,获得10
16秒前
帅狗发布了新的文献求助10
17秒前
18秒前
18秒前
所所应助nenoaowu采纳,获得10
19秒前
共享精神应助帅狗采纳,获得30
22秒前
22秒前
华仔应助科研通管家采纳,获得10
23秒前
丘比特应助科研通管家采纳,获得10
23秒前
23秒前
科目三应助科研通管家采纳,获得10
23秒前
123发布了新的文献求助10
23秒前
一路硕博发布了新的文献求助10
23秒前
小叶发布了新的文献求助10
24秒前
hmx发布了新的文献求助10
24秒前
orixero应助shanshan采纳,获得30
24秒前
木槿发布了新的文献求助10
26秒前
文静尔风完成签到,获得积分10
27秒前
dd36完成签到,获得积分10
30秒前
完美世界应助火星上雅寒采纳,获得10
31秒前
32秒前
玉yu完成签到 ,获得积分10
35秒前
38秒前
39秒前
39秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416111
求助须知:如何正确求助?哪些是违规求助? 3017776
关于积分的说明 8882650
捐赠科研通 2705369
什么是DOI,文献DOI怎么找? 1483503
科研通“疑难数据库(出版商)”最低求助积分说明 685769
邀请新用户注册赠送积分活动 680802