Enhanced Feature Extraction YOLO Industrial Small Object Detection Algorithm based on Receptive-Field Attention and Multi-scale Features

增采样 计算机科学 人工智能 模糊逻辑 目标检测 特征提取 模式识别(心理学) 算法 计算机视觉 图像(数学)
作者
Hongfeng Tao,Yuechang Zheng,Yue Wang,J. F. Qiu,Vladimir Stojanović
出处
期刊:Measurement Science and Technology [IOP Publishing]
被引量:33
标识
DOI:10.1088/1361-6501/ad633d
摘要

Abstract To guarantee the stability and safety of industrial production, it is necessary to regulate the behavior of employees. However, the high background complexity, low pixel count, occlusion and fuzzy appearance can result in a high leakage rate and poor detection accuracy of small objects. Considering the above problems, this paper proposes the EFE-YOLO (Enhanced feature extraction-You Only Look Once) algorithm to improve the detection of industrial small objects. To enhance the detection of fuzzy and occluded objects, the PSRFA (PixelShuffle and Receptive-Field Attention) upsampling module is designed to preserve and reconstruct more detailed information and extract the receptive-field attention weights. Furthermore, the MSE (multi-scale and efficient) downsampling module is designed to merge global and local semantic features to alleviate the problem of false and missed detection. Subsequently, the AFAF (Adaptive Feature Adjustment and Fusion) module is designed to highlight the important features and suppress background information that is not beneficial for detection. Finally, the EIoU loss function is used to improve the convergence speed and localization accuracy. All experiments are conducted on homemade dataset. The improved YOLOv5 algorithm proposed in this paper improves mAP@0.50 (mean average precision at a threshold of 0.50) by 2.8\% compared to the YOLOv5 algorithm. The average precision and recall of small objects show an improvement of 8.1\% and 7.5\%, respectively. The detection performance is still leading in comparison with other advanced algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小凉完成签到,获得积分10
刚刚
哈基米发布了新的文献求助10
刚刚
1秒前
1秒前
wz发布了新的文献求助10
1秒前
独孤幻月96应助milkmore采纳,获得10
1秒前
1秒前
2秒前
curlycai关注了科研通微信公众号
2秒前
3秒前
Shahid发布了新的文献求助10
3秒前
3秒前
子强完成签到,获得积分10
3秒前
干净柏柳发布了新的文献求助10
3秒前
3秒前
天天快乐应助heiztcasino采纳,获得10
4秒前
机灵的胡萝卜完成签到,获得积分10
4秒前
4秒前
卤西瓜的科研蛋完成签到,获得积分10
4秒前
yc发布了新的文献求助10
4秒前
Donby发布了新的文献求助30
5秒前
普鲁卡因完成签到,获得积分10
5秒前
5秒前
十三不靠发布了新的文献求助10
6秒前
semigreen发布了新的文献求助10
6秒前
完美世界应助gwentea采纳,获得10
6秒前
李爱国应助自由的馒头采纳,获得10
6秒前
顾年完成签到,获得积分20
6秒前
loong发布了新的文献求助10
7秒前
7秒前
7秒前
高高烨磊完成签到,获得积分20
7秒前
冬日毛衣应助737采纳,获得10
7秒前
朴实曼岚完成签到,获得积分10
7秒前
7秒前
8秒前
user发布了新的文献求助10
9秒前
万能图书馆应助aaa采纳,获得10
9秒前
9秒前
风吹似夏完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403