Enhanced Feature Extraction YOLO Industrial Small Object Detection Algorithm based on Receptive-Field Attention and Multi-scale Features

增采样 计算机科学 人工智能 模糊逻辑 目标检测 特征提取 模式识别(心理学) 算法 计算机视觉 图像(数学)
作者
Hongfeng Tao,Yuechang Zheng,Yue Wang,J. F. Qiu,Vladimir Stojanović
出处
期刊:Measurement Science and Technology [IOP Publishing]
被引量:5
标识
DOI:10.1088/1361-6501/ad633d
摘要

Abstract To guarantee the stability and safety of industrial production, it is necessary to regulate the behavior of employees. However, the high background complexity, low pixel count, occlusion and fuzzy appearance can result in a high leakage rate and poor detection accuracy of small objects. Considering the above problems, this paper proposes the EFE-YOLO (Enhanced feature extraction-You Only Look Once) algorithm to improve the detection of industrial small objects. To enhance the detection of fuzzy and occluded objects, the PSRFA (PixelShuffle and Receptive-Field Attention) upsampling module is designed to preserve and reconstruct more detailed information and extract the receptive-field attention weights. Furthermore, the MSE (multi-scale and efficient) downsampling module is designed to merge global and local semantic features to alleviate the problem of false and missed detection. Subsequently, the AFAF (Adaptive Feature Adjustment and Fusion) module is designed to highlight the important features and suppress background information that is not beneficial for detection. Finally, the EIoU loss function is used to improve the convergence speed and localization accuracy. All experiments are conducted on homemade dataset. The improved YOLOv5 algorithm proposed in this paper improves mAP@0.50 (mean average precision at a threshold of 0.50) by 2.8\% compared to the YOLOv5 algorithm. The average precision and recall of small objects show an improvement of 8.1\% and 7.5\%, respectively. The detection performance is still leading in comparison with other advanced algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
3秒前
3秒前
奋斗映冬关注了科研通微信公众号
4秒前
JamesPei应助ssssxr采纳,获得10
4秒前
zz完成签到,获得积分10
4秒前
CodeCraft应助zhengxy2002采纳,获得30
4秒前
Eternitymaria发布了新的文献求助10
5秒前
西奥完成签到 ,获得积分10
8秒前
酷酷的杨发布了新的文献求助10
8秒前
雨林霖完成签到,获得积分10
8秒前
暗栀完成签到 ,获得积分10
8秒前
9秒前
12秒前
ddd发布了新的文献求助10
12秒前
SYLH应助崽崽采纳,获得10
13秒前
情怀应助VitoLi采纳,获得10
13秒前
13秒前
刚子发布了新的文献求助10
13秒前
赘婿应助嗯对采纳,获得10
14秒前
英姑应助南敏株采纳,获得10
14秒前
小厮完成签到,获得积分10
15秒前
传奇3应助科研小菜狗采纳,获得10
15秒前
17秒前
Chocolate发布了新的文献求助10
17秒前
Syrup完成签到,获得积分10
17秒前
谈笑间发布了新的文献求助10
18秒前
无心的白桃完成签到 ,获得积分10
18秒前
O泡果奶完成签到,获得积分10
18秒前
人间烟火完成签到,获得积分10
18秒前
misu完成签到,获得积分10
19秒前
王359发布了新的文献求助30
22秒前
杜仲文完成签到,获得积分10
23秒前
24秒前
何照人应助科研通管家采纳,获得20
24秒前
星辰大海应助科研通管家采纳,获得10
24秒前
英姑应助科研通管家采纳,获得10
24秒前
何照人应助科研通管家采纳,获得10
24秒前
科目三应助科研通管家采纳,获得10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967409
求助须知:如何正确求助?哪些是违规求助? 3512686
关于积分的说明 11164710
捐赠科研通 3247680
什么是DOI,文献DOI怎么找? 1793964
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498