Machine learning-based prediction of diabetic patients using blood routine data

计算机科学 机器学习 人工智能 糖尿病 内科学 医学 内分泌学
作者
Honghao Li,Dongqing Su,Xinpeng Zhang,Yuanyuan He,Xu Luo,Yuqiang Xiong,Min Zou,Huiyan Wei,Shaoran Wen,Qilemuge Xi,Yongchun Zuo,Lei Yang
出处
期刊:Methods [Elsevier BV]
卷期号:229: 156-162 被引量:1
标识
DOI:10.1016/j.ymeth.2024.07.001
摘要

Diabetes stands as one of the most prevalent chronic diseases globally. The conventional methods for diagnosing diabetes are frequently overlooked until individuals manifest noticeable symptoms of the condition. This study aimed to address this gap by collecting comprehensive datasets, including 1000 instances of blood routine data from diabetes patients and an equivalent dataset from healthy individuals. To differentiate diabetes patients from their healthy counterparts, a computational framework was established, encompassing eXtreme Gradient Boosting (XGBoost), random forest, support vector machine, and elastic net algorithms. Notably, the XGBoost model emerged as the most effective, exhibiting superior predictive results with an area under the receiver operating characteristic curve (AUC) of 99.90% in the training set and 98.51% in the testing set. Moreover, the model showcased commendable performance during external validation, achieving an overall accuracy of 81.54%. The probability generated by the model serves as a risk score for diabetes susceptibility. Further interpretability was achieved through the utilization of the Shapley additive explanations (SHAP) algorithm, identifying pivotal indicators such as mean corpuscular hemoglobin concentration (MCHC), lymphocyte ratio (LY%), standard deviation of red blood cell distribution width (RDW-SD), and mean corpuscular hemoglobin (MCH). This enhances our understanding of the predictive mechanisms underlying diabetes. To facilitate the application in clinical and real-life settings, a nomogram was created based on the logistic regression algorithm, which can provide a preliminary assessment of the likelihood of an individual having diabetes. Overall, this research contributes valuable insights into the predictive modeling of diabetes, offering potential applications in clinical practice for more effective and timely diagnoses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
uon完成签到,获得积分10
1秒前
HughWang完成签到,获得积分10
5秒前
5秒前
张西西完成签到 ,获得积分10
7秒前
Yep0672完成签到,获得积分10
9秒前
小李完成签到 ,获得积分10
10秒前
无心的天真完成签到 ,获得积分10
16秒前
longmad完成签到,获得积分10
17秒前
菠萝炒蛋加饭完成签到 ,获得积分10
17秒前
共享精神应助橙子采纳,获得10
17秒前
柚子完成签到 ,获得积分10
17秒前
大民王完成签到,获得积分10
18秒前
甜蜜的阳光完成签到 ,获得积分10
19秒前
JamesPei应助Wang采纳,获得10
21秒前
dadazhou完成签到,获得积分10
23秒前
安详映阳完成签到 ,获得积分10
23秒前
乐人完成签到 ,获得积分10
25秒前
小杨完成签到,获得积分20
26秒前
洁净缘分完成签到 ,获得积分10
27秒前
28秒前
橙子发布了新的文献求助10
31秒前
物极必反7完成签到 ,获得积分10
33秒前
小马甲应助清欢采纳,获得10
35秒前
LYZ完成签到,获得积分10
40秒前
BAI_1完成签到,获得积分10
40秒前
star完成签到,获得积分10
42秒前
852应助科研通管家采纳,获得10
53秒前
cdercder应助科研通管家采纳,获得10
53秒前
keyan发布了新的文献求助10
1分钟前
三金应助Li采纳,获得10
1分钟前
研友_Z60ObL完成签到,获得积分10
1分钟前
活泼山雁完成签到,获得积分10
1分钟前
cccyyb完成签到,获得积分10
1分钟前
暴躁的问兰完成签到 ,获得积分10
1分钟前
安静严青完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI5应助小心翼翼采纳,获得10
1分钟前
gege完成签到 ,获得积分10
1分钟前
zhuboujs完成签到,获得积分10
1分钟前
Wang发布了新的文献求助10
1分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729191
求助须知:如何正确求助?哪些是违规求助? 3274358
关于积分的说明 9985021
捐赠科研通 2989562
什么是DOI,文献DOI怎么找? 1640614
邀请新用户注册赠送积分活动 779249
科研通“疑难数据库(出版商)”最低求助积分说明 748145