光催化
材料科学
氧气
研磨
化学工程
空位缺陷
甘露醇
降级(电信)
纳米技术
化学
催化作用
复合材料
有机化学
计算机科学
电信
工程类
结晶学
作者
Xun Yang,H.A. Habib,Hui Yang,Zia Ur Rehman,Yongcai Zhang,Xiaoyong Xu,Xiaozhi Wang,Kewang Zheng,Jianhua Hou
出处
期刊:ACS Sustainable Chemistry & Engineering
[American Chemical Society]
日期:2024-07-15
卷期号:12 (30): 11308-11318
被引量:6
标识
DOI:10.1021/acssuschemeng.4c03052
摘要
It remains an exciting challenge to achieve a direct production of oxygen vacancies (OVs) by the one-step grinding of BiOCl visible-light-driven photocatalysts. Herein, BiOCl nanoplates are synthesized via a mannitol-assisted direct grinding method, which exhibits an efficient photocatalytic activity for CO2 reduction and degradation of organic toxins. Different from the previously reported BiOCl synthesized by water/solvatory thermal synthesis, the reaction conditions are mild and the preparation speed is fast. Compared with the BiOCl, the surface area of modified BiOCl-1 nanoplates is enhanced by 13.2 times and has an abundant pore structure. In addition, OVs are introduced in modified nanoplates, which reduce the bandwidth and promote the separation of charge carriers. The CO yield rate of BiOCl-1 reached 27.2 μmol h–1 g–1, which was 8.1 times superior to nonmodified BiOCl (3.4 μmol h–1 g–1). The degradation rate of rhodamine B (20 mg L–1) by BiOCl-0 was only 51.7%, while that of BiOCl-1 reached up to 92.8%. This increases the OVs content and narrows the band gap, which is more conducive to the separation of electron–hole pairs and improves photocatalytic activity. This 3 min grinding with no surfactant-free solid-phase reaction is suitable for large-scale preparation and opens up the possibility for industrial applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI