Oxygen Vacancy-Modified BiOCl Nanoplates via Three Minutes Mannitol-Assisted Grinding Treatment for Excellent Photocatalytic Applications

光催化 材料科学 氧气 研磨 化学工程 空位缺陷 甘露醇 降级(电信) 纳米技术 化学 催化作用 复合材料 有机化学 计算机科学 电信 工程类 结晶学
作者
Xun Yang,H.A. Habib,Hui Yang,Zia Ur Rehman,Yongcai Zhang,Xiaoyong Xu,Xiaozhi Wang,Kewang Zheng,Jianhua Hou
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
卷期号:12 (30): 11308-11318 被引量:16
标识
DOI:10.1021/acssuschemeng.4c03052
摘要

It remains an exciting challenge to achieve a direct production of oxygen vacancies (OVs) by the one-step grinding of BiOCl visible-light-driven photocatalysts. Herein, BiOCl nanoplates are synthesized via a mannitol-assisted direct grinding method, which exhibits an efficient photocatalytic activity for CO2 reduction and degradation of organic toxins. Different from the previously reported BiOCl synthesized by water/solvatory thermal synthesis, the reaction conditions are mild and the preparation speed is fast. Compared with the BiOCl, the surface area of modified BiOCl-1 nanoplates is enhanced by 13.2 times and has an abundant pore structure. In addition, OVs are introduced in modified nanoplates, which reduce the bandwidth and promote the separation of charge carriers. The CO yield rate of BiOCl-1 reached 27.2 μmol h–1 g–1, which was 8.1 times superior to nonmodified BiOCl (3.4 μmol h–1 g–1). The degradation rate of rhodamine B (20 mg L–1) by BiOCl-0 was only 51.7%, while that of BiOCl-1 reached up to 92.8%. This increases the OVs content and narrows the band gap, which is more conducive to the separation of electron–hole pairs and improves photocatalytic activity. This 3 min grinding with no surfactant-free solid-phase reaction is suitable for large-scale preparation and opens up the possibility for industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_8RyzBZ发布了新的文献求助10
1秒前
Zenia发布了新的文献求助10
1秒前
Nell发布了新的文献求助10
2秒前
orixero应助橙酒采纳,获得10
2秒前
成就的咖啡完成签到 ,获得积分10
3秒前
FadeSv完成签到,获得积分10
3秒前
zhangyk发布了新的文献求助10
4秒前
科研通AI6应助高玉峰采纳,获得10
4秒前
优雅的笑阳完成签到,获得积分10
4秒前
酷炫的谷丝完成签到,获得积分10
5秒前
5秒前
科研通AI2S应助coldzer0采纳,获得10
6秒前
量子星尘发布了新的文献求助10
8秒前
伶俐的绝山关注了科研通微信公众号
9秒前
聪明的鞅发布了新的文献求助10
10秒前
haly完成签到 ,获得积分10
10秒前
忧郁的平安完成签到,获得积分10
11秒前
彭于晏应助高玉峰采纳,获得10
13秒前
13秒前
平常的苡完成签到,获得积分10
14秒前
清河海风完成签到,获得积分10
14秒前
15秒前
啦啦啦啦完成签到 ,获得积分10
16秒前
无限的晓蓝关注了科研通微信公众号
17秒前
zhazd发布了新的文献求助10
18秒前
19秒前
20秒前
橙酒发布了新的文献求助10
21秒前
nini应助出岫采纳,获得50
22秒前
杨佳莉完成签到,获得积分10
22秒前
顾矜应助科研通管家采纳,获得10
22秒前
核桃应助科研通管家采纳,获得10
22秒前
我是老大应助科研通管家采纳,获得10
22秒前
bkagyin应助科研通管家采纳,获得10
22秒前
情怀应助科研通管家采纳,获得10
22秒前
大佛应助科研通管家采纳,获得10
22秒前
酷波er应助科研通管家采纳,获得10
22秒前
852应助科研通管家采纳,获得10
22秒前
yuyu发布了新的文献求助20
23秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615265
求助须知:如何正确求助?哪些是违规求助? 4700145
关于积分的说明 14906831
捐赠科研通 4741546
什么是DOI,文献DOI怎么找? 2548008
邀请新用户注册赠送积分活动 1511727
关于科研通互助平台的介绍 1473781