材料科学
阴极
晶界
镍
电化学
多孔性
插层(化学)
纳米技术
复合材料
化学工程
冶金
微观结构
电极
无机化学
化学
物理化学
工程类
作者
Shijie Jiang,Jianpeng Peng,Jiachao Yang,Yi Cheng,Guangsheng Huo,Yunjiao Li,Zhenjiang He
标识
DOI:10.1021/acsami.4c11041
摘要
To forge ahead with the next generation of power batteries boasting superior energy density, nickel-rich layered oxides are regarded as some of the most promising cathode materials. However, challenges such as microcracks, which are attributed to the elevated nickel content of the materials, have posed impediments to their further development and application. Consequently, this article focuses on the understanding of the materials in the deep delithiation state, dissecting their degradation mechanisms through a dual lens of electrochemical and mechanical properties. The comprehensive analysis reveals that microcracks within the particles exhibit a degree of reversibility. However, with repeated Li+ de-/intercalation, these microcracks progressively propagate and permeate the entire particle, ultimately leading to particle fragmentation. Therefore, this study employs Dy2O3 as an inducer to facilitate the growth of primary crystal grains, reducing the internal porosity of the particles. This effectively enhances the conductivity and lithium-ion diffusion kinetics in deep lithium-ion deintercalation states of nickel-rich cathode materials. The modified material exhibits significant suppression of microcrack formation and growth during cycling, leading to notable improvements in its chemical-mechanical properties. These degradation mechanisms and modification strategies of Ni-rich cathodes offer valuable insights into the development of Ni-rich cathode materials tailored for electric vehicles.
科研通智能强力驱动
Strongly Powered by AbleSci AI