Modulating Grain Boundary Networks to Achieve Superior Chemomechanical Coupling Properties in Nickel-Rich Cathode Materials

材料科学 阴极 晶界 电化学 多孔性 插层(化学) 纳米技术 复合材料 化学工程 冶金 微观结构 电极 无机化学 工程类 物理化学 化学
作者
Shijie Jiang,Jianpeng Peng,Jiachao Yang,Yi Cheng,Guangsheng Huo,Yunjiao Li,Zhenjiang He
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (35): 46401-46411
标识
DOI:10.1021/acsami.4c11041
摘要

To forge ahead with the next generation of power batteries boasting superior energy density, nickel-rich layered oxides are regarded as some of the most promising cathode materials. However, challenges such as microcracks, which are attributed to the elevated nickel content of the materials, have posed impediments to their further development and application. Consequently, this article focuses on the understanding of the materials in the deep delithiation state, dissecting their degradation mechanisms through a dual lens of electrochemical and mechanical properties. The comprehensive analysis reveals that microcracks within the particles exhibit a degree of reversibility. However, with repeated Li+ de-/intercalation, these microcracks progressively propagate and permeate the entire particle, ultimately leading to particle fragmentation. Therefore, this study employs Dy2O3 as an inducer to facilitate the growth of primary crystal grains, reducing the internal porosity of the particles. This effectively enhances the conductivity and lithium-ion diffusion kinetics in deep lithium-ion deintercalation states of nickel-rich cathode materials. The modified material exhibits significant suppression of microcrack formation and growth during cycling, leading to notable improvements in its chemical-mechanical properties. These degradation mechanisms and modification strategies of Ni-rich cathodes offer valuable insights into the development of Ni-rich cathode materials tailored for electric vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李健应助莴苣采纳,获得10
1秒前
水月完成签到,获得积分10
1秒前
1秒前
geold完成签到,获得积分10
2秒前
华仔应助luluki采纳,获得10
2秒前
joy完成签到,获得积分0
3秒前
3秒前
正直的广缘完成签到 ,获得积分10
3秒前
满意静丹发布了新的文献求助10
3秒前
不安的白昼完成签到 ,获得积分10
3秒前
馒头吃不起完成签到 ,获得积分10
3秒前
LEO完成签到,获得积分10
3秒前
gyhmm完成签到,获得积分10
3秒前
超人不会飞关注了科研通微信公众号
3秒前
热吻街头完成签到,获得积分10
4秒前
嘻嘻完成签到 ,获得积分10
4秒前
南宫清涟完成签到,获得积分10
4秒前
沫柠完成签到 ,获得积分10
5秒前
扶瑶可接完成签到 ,获得积分10
5秒前
123发布了新的文献求助10
5秒前
殷启维完成签到,获得积分10
5秒前
阿耶完成签到,获得积分10
6秒前
6秒前
Sciiiiiii完成签到,获得积分10
6秒前
拾忆完成签到,获得积分10
6秒前
义气谷兰完成签到,获得积分10
7秒前
贡菜选手完成签到,获得积分10
7秒前
干净傲霜完成签到 ,获得积分10
7秒前
乔治韦斯莱完成签到 ,获得积分10
8秒前
桐桐应助吾系渣渣辉采纳,获得10
9秒前
随心所欲完成签到 ,获得积分10
10秒前
博弈-研赞比亚完成签到,获得积分10
10秒前
英姑应助123采纳,获得10
11秒前
jiao完成签到,获得积分10
12秒前
浊轶发布了新的文献求助10
12秒前
shijiaoshou完成签到,获得积分10
13秒前
泡泡茶壶o完成签到 ,获得积分10
13秒前
667完成签到,获得积分10
13秒前
积极的千琴完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4571205
求助须知:如何正确求助?哪些是违规求助? 3992388
关于积分的说明 12357887
捐赠科研通 3665364
什么是DOI,文献DOI怎么找? 2020042
邀请新用户注册赠送积分活动 1054379
科研通“疑难数据库(出版商)”最低求助积分说明 941973