Modulating Grain Boundary Networks to Achieve Superior Chemomechanical Coupling Properties in Nickel-Rich Cathode Materials

材料科学 阴极 晶界 电化学 多孔性 插层(化学) 纳米技术 复合材料 化学工程 冶金 微观结构 电极 无机化学 化学 物理化学 工程类
作者
Shijie Jiang,Jianpeng Peng,Jiachao Yang,Yi Cheng,Guangsheng Huo,Yunjiao Li,Zhenjiang He
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (35): 46401-46411
标识
DOI:10.1021/acsami.4c11041
摘要

To forge ahead with the next generation of power batteries boasting superior energy density, nickel-rich layered oxides are regarded as some of the most promising cathode materials. However, challenges such as microcracks, which are attributed to the elevated nickel content of the materials, have posed impediments to their further development and application. Consequently, this article focuses on the understanding of the materials in the deep delithiation state, dissecting their degradation mechanisms through a dual lens of electrochemical and mechanical properties. The comprehensive analysis reveals that microcracks within the particles exhibit a degree of reversibility. However, with repeated Li+ de-/intercalation, these microcracks progressively propagate and permeate the entire particle, ultimately leading to particle fragmentation. Therefore, this study employs Dy2O3 as an inducer to facilitate the growth of primary crystal grains, reducing the internal porosity of the particles. This effectively enhances the conductivity and lithium-ion diffusion kinetics in deep lithium-ion deintercalation states of nickel-rich cathode materials. The modified material exhibits significant suppression of microcrack formation and growth during cycling, leading to notable improvements in its chemical-mechanical properties. These degradation mechanisms and modification strategies of Ni-rich cathodes offer valuable insights into the development of Ni-rich cathode materials tailored for electric vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小桔青山完成签到,获得积分10
1秒前
zele女士完成签到,获得积分10
2秒前
2秒前
3秒前
ymm完成签到,获得积分20
3秒前
4秒前
张思甜完成签到,获得积分10
4秒前
怎么说发布了新的文献求助10
4秒前
4秒前
zhaosiqi完成签到 ,获得积分10
5秒前
搜集达人应助69qq采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
包宇发布了新的文献求助10
6秒前
otto12306发布了新的文献求助10
7秒前
August完成签到,获得积分10
7秒前
LYJ完成签到,获得积分10
9秒前
勇胜发布了新的文献求助10
9秒前
慕涔完成签到,获得积分10
9秒前
wqm完成签到 ,获得积分10
9秒前
9秒前
木槿昔年完成签到,获得积分20
11秒前
逍遥小书生完成签到,获得积分10
11秒前
Bailey完成签到,获得积分10
11秒前
11秒前
安详灵安完成签到,获得积分10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
12秒前
小青椒应助科研通管家采纳,获得10
12秒前
xiaolei001应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得30
12秒前
12秒前
凤凰应助科研通管家采纳,获得100
12秒前
李健应助科研通管家采纳,获得10
12秒前
无花果应助科研通管家采纳,获得20
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419038
求助须知:如何正确求助?哪些是违规求助? 4534530
关于积分的说明 14144956
捐赠科研通 4450879
什么是DOI,文献DOI怎么找? 2441467
邀请新用户注册赠送积分活动 1433115
关于科研通互助平台的介绍 1410503