Modulating Grain Boundary Networks to Achieve Superior Chemomechanical Coupling Properties in Nickel-Rich Cathode Materials

材料科学 阴极 晶界 电化学 多孔性 插层(化学) 纳米技术 复合材料 化学工程 冶金 微观结构 电极 无机化学 化学 物理化学 工程类
作者
Shijie Jiang,Jianpeng Peng,Jiachao Yang,Yi Cheng,Guangsheng Huo,Yunjiao Li,Zhenjiang He
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (35): 46401-46411
标识
DOI:10.1021/acsami.4c11041
摘要

To forge ahead with the next generation of power batteries boasting superior energy density, nickel-rich layered oxides are regarded as some of the most promising cathode materials. However, challenges such as microcracks, which are attributed to the elevated nickel content of the materials, have posed impediments to their further development and application. Consequently, this article focuses on the understanding of the materials in the deep delithiation state, dissecting their degradation mechanisms through a dual lens of electrochemical and mechanical properties. The comprehensive analysis reveals that microcracks within the particles exhibit a degree of reversibility. However, with repeated Li+ de-/intercalation, these microcracks progressively propagate and permeate the entire particle, ultimately leading to particle fragmentation. Therefore, this study employs Dy2O3 as an inducer to facilitate the growth of primary crystal grains, reducing the internal porosity of the particles. This effectively enhances the conductivity and lithium-ion diffusion kinetics in deep lithium-ion deintercalation states of nickel-rich cathode materials. The modified material exhibits significant suppression of microcrack formation and growth during cycling, leading to notable improvements in its chemical-mechanical properties. These degradation mechanisms and modification strategies of Ni-rich cathodes offer valuable insights into the development of Ni-rich cathode materials tailored for electric vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11发布了新的文献求助10
刚刚
JRong发布了新的文献求助10
刚刚
Misty发布了新的文献求助10
1秒前
1秒前
iacir33发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
星辰大海应助cj采纳,获得10
3秒前
十五发布了新的文献求助10
3秒前
4秒前
执着手套完成签到,获得积分10
4秒前
在水一方应助Alora采纳,获得10
4秒前
嘀嘀菇菇完成签到 ,获得积分10
4秒前
5秒前
谨慎雪碧发布了新的文献求助30
5秒前
番茄豆丁发布了新的文献求助80
6秒前
YYY发布了新的文献求助10
6秒前
8秒前
2003zfc发布了新的文献求助50
8秒前
酷波er应助机智雅阳采纳,获得10
8秒前
9秒前
斯文明杰发布了新的文献求助10
10秒前
刘肖完成签到,获得积分10
10秒前
我爱写论文完成签到,获得积分10
11秒前
Lisa田发布了新的文献求助20
12秒前
12秒前
12秒前
Helium发布了新的文献求助10
12秒前
可爱的onetwo关注了科研通微信公众号
13秒前
Percy给Percy的求助进行了留言
13秒前
15秒前
15秒前
15秒前
甘齐发布了新的文献求助10
16秒前
Jnest完成签到,获得积分10
17秒前
莫名乐乐发布了新的文献求助10
17秒前
爱听歌电灯胆完成签到 ,获得积分10
19秒前
乐乐应助wenbaka采纳,获得10
19秒前
YYY完成签到,获得积分20
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299457
求助须知:如何正确求助?哪些是违规求助? 4447594
关于积分的说明 13843316
捐赠科研通 4333203
什么是DOI,文献DOI怎么找? 2378632
邀请新用户注册赠送积分活动 1373923
关于科研通互助平台的介绍 1339452