An Energy-centric Framework for Category-free Out-of-distribution Node Detection in Graphs

计算机科学 节点(物理) 能量(信号处理) 数学 统计 工程类 结构工程
作者
Zheng Gong,Ying Sun
标识
DOI:10.1145/3637528.3671939
摘要

Graph neural networks have garnered notable attention for effectively processing graph-structured data. Prevalent models prioritize improving in-distribution (IND) data performance, frequently overlooking the risks from potential out-of-distribution (OOD) nodes during training and inference. In real-world graphs, the automated network construction can introduce noisy nodes from unknown distributions. Previous research into OOD node detection, typically referred to as entropy-based methods, calculates OOD measurements from the prediction entropy alongside category classification training. However, the nodes in the graph might not be pre-labeled with specific categories, rendering entropy-based OOD detectors inapplicable in such category-free situations. To tackle this issue, we propose an energy-centric density estimation framework for OOD node detection, referred to as EnergyDef. Within this framework, we introduce an energy-based GNN to compute node energies that act as indicators of node density and reveal the OOD uncertainty of nodes. Importantly, EnergyDef can efficiently identify OOD nodes with low-resource OOD node annotations, achieved by sampling hallucinated nodes via Langevin Dynamics and structure estimation, along with training through Contrastive Divergence. Our comprehensive experiments on real-world datasets substantiate that our framework markedly surpasses state-of-the-art methods in terms of detection quality, even under conditions of scarce or entirely absent OOD node annotations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
付品聪发布了新的文献求助10
2秒前
曹喳喳发布了新的文献求助10
3秒前
ding应助分析采纳,获得10
3秒前
wy.he应助韩凌采纳,获得30
4秒前
4秒前
花痴的幻儿完成签到,获得积分10
5秒前
白菜完成签到 ,获得积分0
8秒前
xie123发布了新的文献求助10
8秒前
哈哈哈发布了新的文献求助10
8秒前
9秒前
六六完成签到,获得积分10
11秒前
澳大利亚完成签到,获得积分10
11秒前
冷笑完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
小叶子发布了新的文献求助10
13秒前
斯文败类应助科研狗采纳,获得10
14秒前
scdd完成签到 ,获得积分10
17秒前
zm发布了新的文献求助10
17秒前
Xiaojiu发布了新的文献求助10
18秒前
bankxiu发布了新的文献求助10
19秒前
科研狗完成签到,获得积分10
22秒前
xie123完成签到,获得积分20
23秒前
油菜花的愿望完成签到,获得积分10
23秒前
23秒前
隐形曼青应助沉静的曼荷采纳,获得10
26秒前
科研狗给科研狗的求助进行了留言
27秒前
27秒前
BU发布了新的文献求助10
28秒前
29秒前
xxx发布了新的文献求助10
31秒前
下文献的蜉蝣完成签到 ,获得积分10
32秒前
烟花应助勤恳的灵雁采纳,获得10
33秒前
BU完成签到,获得积分10
34秒前
Lo完成签到,获得积分10
35秒前
40秒前
41秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735960
求助须知:如何正确求助?哪些是违规求助? 3279656
关于积分的说明 10016904
捐赠科研通 2996399
什么是DOI,文献DOI怎么找? 1644045
邀请新用户注册赠送积分活动 781753
科研通“疑难数据库(出版商)”最低求助积分说明 749425