The Emotional Intelligence of the GPT-4 Large Language Model

情商 比例(比率) 宣言 心理学 考试(生物学) 人类智力 情商评估 自反性 认知心理学 社会心理学 自然语言处理 人工智能 计算机科学 发展心理学 古生物学 社会科学 物理 量子力学 社会学 生物 程序设计语言
作者
Gleb Vzorin,Alexey Bukinich,Anna Sedykh,Ирина Ветрова,Elena A. Sergienko
出处
期刊:Psychology in Russia [Russian Psychological Society]
卷期号:17 (2): 85-99
标识
DOI:10.11621/pir.2024.0206
摘要

Background. Advanced AI models such as the large language model GPT-4 demonstrate sophisticated intellectual capabilities, sometimes exceeding human intellectual performance. However, the emotional competency of these models, along with their underlying mechanisms, has not been sufficiently evaluated. Objective. Our research aimed to explore different emotional intelligence domains in GPT-4 according to the Mayer–Salovey–Caruso model. We also tried to find out whether GPT-4's answer accuracy is consistent with its explanation of the answer. Design. The Russian version of the Mayer–Salovey–Caruso Emotional Intelligence Test (MSCEIT) sections was used in this research, with questions asked as text prompts in separate, independent ChatGPT chats three times each. Results. High scores were achieved by the GPT-4 Large Language Model on the Understanding Emotions scale (with scores of 117, 124, and 128 across the three runs) and the Strategic Emotional Intelligence scale (with scores of 118, 121, and 122). Average scores were obtained on the Managing Emotions scale (103, 108, and 110 points). However, the Using Emotions to Facilitate Thought scale yielded low and less reliable scores (85, 86, and 88 points). Four types of explanations for the answer choices were identified: Meaningless sentences; Relation declaration; Implicit logic; and Explicit logic. Correct answers were accompanied by all types of explanations, whereas incorrect answers were only followed by Meaningless sentences or Explicit logic. This distribution aligns with observed patterns in children when they explore and elucidate mental states. Conclusion. GPT-4 is capable of emotion identification and managing emotions, but it lacks deep reflexive analysis of emotional experience and the motivational aspect of emotions.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
shiqiang mu发布了新的文献求助10
1秒前
Singularity应助哒哒哒采纳,获得20
2秒前
Hshi完成签到 ,获得积分10
2秒前
3秒前
3秒前
4秒前
5秒前
6秒前
7秒前
进击的小白菜完成签到,获得积分10
7秒前
7秒前
8秒前
嗯哼应助cnspower采纳,获得200
8秒前
华仔应助lucky采纳,获得10
9秒前
沐沐1003发布了新的文献求助10
10秒前
海风发布了新的文献求助10
12秒前
Singularity应助阳光奎采纳,获得20
13秒前
14秒前
科研通AI2S应助米尔的猫采纳,获得10
15秒前
小二郎应助sci采纳,获得10
15秒前
16秒前
海风完成签到,获得积分10
17秒前
李健应助有机分子笼采纳,获得10
18秒前
18秒前
19秒前
Lucas应助爱听歌的白莲采纳,获得10
19秒前
社会五好青年完成签到,获得积分10
19秒前
零慧发布了新的文献求助10
20秒前
ZYQ完成签到 ,获得积分10
20秒前
妮妮完成签到,获得积分10
20秒前
cen发布了新的文献求助10
23秒前
26秒前
26秒前
27秒前
英俊的铭应助里里采纳,获得10
28秒前
CodeCraft应助清秀妙竹采纳,获得10
28秒前
29秒前
雯雯完成签到,获得积分10
29秒前
fhlwft完成签到,获得积分10
31秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 970
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
Toward personalized care for insomnia in the US Army: a machine learning model to predict response to cognitive behavioral therapy for insomnia 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3392384
求助须知:如何正确求助?哪些是违规求助? 3003056
关于积分的说明 8807166
捐赠科研通 2689817
什么是DOI,文献DOI怎么找? 1473309
科研通“疑难数据库(出版商)”最低求助积分说明 681513
邀请新用户注册赠送积分活动 674348