太赫兹辐射
极化(电化学)
简并能级
高次谐波产生
物理
非线性光学
光学
光电子学
二次谐波产生
激光器
量子力学
化学
物理化学
作者
Guangcheng Sun,Yue Wang,Rongbo Xie,Xiaoguang Zhao
摘要
Resonant nanostructures have emerged as versatile photonic platforms for boosting optical nonlinear responses on a subwavelength scale for their ability to confine intense electromagnetic fields while relaxing the phase-matching requirements. Recent significant advances in this field are associated with the utilization of non-radiative eigenmodes above the light cone, termed bound states in the continuum (BICs), which provide a unique mechanism for light trapping to realize excitation of ultrahigh quality (Q) factor resonances. Nevertheless, the current studies on BICs predominantly focus on symmetry-protected BICs (SP-BICs), whose excitation requires symmetry breaking, and Q factors are limited by fabrication imperfections. Here, we demonstrate a simple and feasible scheme for creating degenerate pairs of mirror-coupled super-BICs by harnessing magnetic dipole resonances coupled to their mirror images in adjacent metal films. Unlike trivial SP-BICs, mirror-coupled BICs showcases the huge enhancement of Q factors and are resilient against fabrication imperfections. By combining mirror-coupled resonance with the engineered radiative loss, we obtain a perfect absorber with near-unity absorption and ultra-narrow bandwidth at a critical coupling condition. Finally, we numerically demonstrate the terahertz (THz) regime, polarization-insensitive highly efficient third-harmonic generation benefiting from the maximum field enhancement localized within the perfect absorber. Our work not only paves the way toward unlocking the full potential of BIC resonance but also promise valuable insights for developing efficient THz optoelectronic devices and metadevices across a wide range of fields.
科研通智能强力驱动
Strongly Powered by AbleSci AI